

MANUEL DE L'UTILISATEUR

POUR LES ROBOTS NACHI

TRADUCTION DES INSTRUCTIONS ORIGINALES (FR)

Sommaire

So	mma	ire	2		
1	Intr	oduction	4		
	1.1	Remarque importante relative à la sécurité	4		
	1.2	Portée du manuel			
	1.3	Convention de nom	5		
	1.4	Comment lire le manuel			
_	<i></i>	•. ,	_		
2		urité			
	2.1	Utilisation prévue			
	2.2	Consignes générales de sécurité			
	2.3	Évaluation des risques			
	2.4	Sécurité environnementale			
	2.5	Fonction de sécurité PLd CAT3	9		
3	Mod	des de fonctionnement	10		
M	ode I	- OnRobot EtherNet/IP	12		
4	Inch	allation	12		
_	4.1	Vue d'ensemble			
	4.2	Montage			
	7.2	4.2.1 Adaptateurs			
		4.2.2 Options du Quick Changer			
		4.2.3 Outils			
	4.3	Câblage	24		
		4.3.1 Câble de données d'outil			
		4.3.2 Câble Ethernet			
		4.3.3 Alimentation électrique	26		
	4.4	Configuration du logiciel	28		
		4.4.1 Vue d'ensemble	28		
		4.4.2 Configuration du Compute Box en tant que Scanner			
		4.4.3 Configuration du robot en tant qu'Adapter			
		4.4.4 Chargement des fonctions OnRobot sur le robot	34		
5	Fonctionnement				
	5.1	Vue d'ensemble	35		
	5.2	Liste de fonctions	36		
M	nde II	I - OnRobot WebLogic™	63		
6		allation			
	6.1	Vue d'ensemble			
	6.2	Montage6.2.1 Adaptateurs			
		U.Z. I AUDUGLEUI S			

Introduction

		6.2.2	Options du Quick Changer	66
		6.2.3	Outils	68
	6.3	Câbla	gege	75
		6.3.1	Données d'outil	
		6.3.2	Câbles d'E/S numérique	
		6.3.3	Câble Ethernet	
		6.3.4	Alimentation électrique	80
7	Fon	ctionne	ement	81
	7.1	Vue d	'ensemble	81
	7.2	Config	guration de l'interface Ethernet	82
	7.3	Web 0	Client	84
	7.4	Menu	OnRobot WebLogic™	86
		7.4.1	Navigateur	86
		7.4.2	Éditeur de programme	87
8	Opt	ions lo	gicielles supplémentaires	96
	8.1	Comp	ute Box	96
		8.1.1	Interfaces	96
		8.1.2	Web Client	96
9	Spé	cificati	ion du matériel	121
	9.1	Fiches	s techniques	121
	9.2	Schén	nas mécaniques	174
		9.2.1	Plaque(s) d'adaptation	174
		9.2.2	Montages	176
		9.2.3	Outils	180
	9.3	Centre	e de gravité	192
10	Mai	ntenan	ice	195
11	Gara	anties.		200
	11.1	Breve	ts	200
	11.2	Garan	tie du produit	200
	11.3	Avis d	e non responsabilité	200
12	Cer	tificatio	ons	202
	12.1	Déclai	ration d'incorporation	215

1 Introduction

1.1 Remarque importante relative à la sécurité

DANGER:

Vous devez lire, comprendre et respecter toutes les consignes de sécurité contenues dans le présent manuel, ainsi que dans le manuel du robot et tous les équipements associés, avant de lancer le mouvement du robot. Le non-respect des consignes de sécurité peut entraîner la mort ou des blessures corporelles graves.

1.2 Portée du manuel

Ce manuel couvre les produits OnRobot suivants et leurs composants :

Préhenseurs	Version
3FG15	v1
Gecko Gripper	v2
RG2	v2
RG2-FT	v2
RG6	v2
SG	v1
VG10	v2
VGC10	v1

Capteurs	Version
HEX-E QC	v3
HEX-H QC	v3

Le cas échéant, la combinaison de ces produits est également traitée dans ce manuel.

NOTE:

De manière générale, les produits sans interface Quick Changer v2 ne sont pas présents dans ce manuel.

Le manuel traite de la version du logiciel Eyes Box/Compute Box suivante :

Logiciel	Version
Eyes Box/Compute Box	v5.1.4

NOTE:

Quand l'Eyes Box/Compute Box possède une version logicielle inférieure, veuillez mettre à jour l'Eyes Box/Compute Box. Pour des instructions détaillées, reportez-vous à la description du Web Client à la fin de ce manuel.

NOTE:

Les fonctions EtherNet/IP utilisées avec la v5.0.x ne sont pas compatibles avec celles requises pour la v5.1.x. Veuillez supprimer les anciennes fonctions avant d'utiliser les nouvelles.

1.3 Convention de nom

Dans le manuel d'utilisation, le Gecko Gripper est appelé Gecko seulement.

Le produit 3FG15 est parfois appelé TFG, comme Three-Finger Gripper.

Les dénominations RG2 et RG6 comme variantes de modèles sont utilisées séparément ou conjointement avec RG2/6 si les informations concernent les deux variantes.

Les dénominations HEX-E QC et HEX-H QC comme variantes de modèles sont utilisées séparément ou conjointement avec HEX-E/H QC si les informations concernent les deux variantes.

1.4 Comment lire le manuel

Ce manuel couvre tous les produits OnRobotet leurs composants disponibles pour votre robot.

Pour qu'il soit facile de comprendre quel type de produit (ou combinaison) ou composant est concerné par les informations fournies, les marqueurs visuels suivants sont utilisés :

RG2

L'instruction ne concerne que le produit RG2.

RG2-FT

L'instruction ne concerne que le produit RG2-FT.

VG10

L'instruction concerne le produit VG10.

Tout texte ne présentant pas ces marqueurs visuels est pertinent pour tous les produits ou composants.

Par commodité, chaque partie comportant des marqueurs visuels (présents sur plusieurs pages) débute par un tableau visant à vous guider vers la page contenant les informations relatives à votre produit ou composant :

RG2	.5
RG2-FT	.5
VG10	.5

2 Sécurité

Les intégrateurs de robots sont responsables du respect des lois et réglementations de sécurité en vigueur dans le pays concerné et de l'élimination de tout risque significatif dans l'application complète. Cela inclut, mais sans s'y limiter:

- Effectuer une évaluation des risques pour l'ensemble du système robotique
- Interfacer avec d'autres machines et dispositifs de sécurité supplémentaires si définis par l'évaluation des risques
- Configurer les paramètres de sécurité appropriés dans le logiciel du robot
- S'assurer que l'utilisateur ne modifiera aucune mesure de sécurité
- Vérifier la conception et l'installation correctes de l'ensemble du système robotique
- Élaborer le mode d'emploi
- Marquer l'installation du robot avec les signes pertinents et les coordonnées de l'intégrateur
- Regrouper toute la documentation dans un dossier technique, y compris l'évaluation des risques et le présent manuel

2.1 Utilisation prévue

Les outils OnRobot sont destinés à être utilisés sur des robots collaboratifs et des robots industriels légers avec des charges utiles différentes selon les spécifications de l'outillage à l'extrémité du bras. Les outils OnRobot sont normalement utilisés dans les applications de prélèvement et de mise en place, de palettisation, d'entretien de machines, d'assemblage, de contrôle et d'inspection de la qualité et de finition de surface.

L'outillage d'extrémité de bras ne doit fonctionner que dans les conditions indiquées dans la section **Fiches techniques**.

Toute utilisation ou application se détournant de l'utilisation prévue est réputée être une mauvaise utilisation inadmissible. Cela inclut, mais sans s'y limiter :

- L'utilisation dans des environnements potentiellement explosifs
- L'utilisation dans des applications médicales et vitales
- L'utilisation avant d'effectuer une évaluation des risques
- Utilisation en dehors des conditions et des spécifications de fonctionnement admissibles.
- L'utilisation près de la tête, du visage et des yeux d'un être humain
- L'utilisation comme aide à l'escalade

2.2 Consignes générales de sécurité

De manière générale, toutes les réglementations, législations et lois nationales en vigueur dans le pays d'installation doivent être respectées. L'intégration et l'utilisation du produit doivent se faire dans le respect des précautions du présent manuel. Une attention particulière doit être portée aux avertissements suivants:

DANGER:

Vous devez lire, comprendre et respecter toutes les consignes de sécurité contenues dans le présent manuel, ainsi que dans le manuel du robot et tous les équipements associés, avant de lancer le mouvement du robot. Le non-respect des consignes de sécurité peut entraîner la mort ou des blessures corporelles graves.

Les informations contenues dans ce manuel ne couvrent pas la conception, l'installation et l'utilisation d'une application robotique complète, ni d'autres équipements périphériques qui peuvent influencer la sécurité du système complet. Le système complet doit être conçu et installé conformément aux exigences de sécurité définies dans les normes et règlements du pays dans lequel le robot est installé.

Toute information de sécurité fournie dans le présent manuel ne doit pas être interprétée comme une garantie par OnRobot A/S que l'application robotique ne causera aucune blessure ou dommage, même si cette application respecte toutes les instructions de sécurité.

OnRobot A/S décline toute responsabilité si l'un des outils OnRobot est endommagé, changé ou modifié de quelque manière que ce soit. OnRobot A/S ne peut être tenu responsable des dommages causés à l'outillage, au robot ou à tout autre équipement OnRobot en raison d'erreurs de programmation ou de dysfonctionnement d'un outil OnRobot.

AVERTISSEMENT:

Les outils OnRobot ne doivent pas être exposés à des conditions de condensation lorsqu'ils sont sous tension ou connectés à un robot. Si des conditions de condensation surviennent pendant le transport ou le stockage, le produit doit être placé entre 20 et 40 degrés Celsius pendant 24 heures avant d'être mis sous tension ou connecté à un robot.

Il est recommandé d'intégrer les outils OnRobot conformément aux guides et normes suivants :

- ISO 10218-2
- ISO 12100
- ISO/TR 20218-1
- ISO/TS 15066

2.3 Évaluation des risques

L'intégrateur du robot doit effectuer une évaluation des risques sur l'application complète du robot. Les outils OnRobot ne sont que des composants d'une application robotisée et ne peuvent donc être utilisés en toute sécurité que si l'intégrateur a pris en compte les aspects de sécurité de l'application complète. Les outils OnRobot sont conçus avec une conception relativement lisse et ronde avec un nombre limité d'arêtes vives et de points de pincement.

Dans les applications collaboratives, la trajectoire du robot peut jouer un rôle de sécurité important. L'intégrateur doit tenir compte de l'angle de contact avec le corps humain, par exemple orienter les outils et pièces OnRobot de manière à ce que la surface de contact dans la direction du mouvement soit aussi grande que possible. Il est recommandé d'orienter les connecteurs d'outils dans la direction opposée au mouvement.

OnRobot A/S a identifié les dangers potentiels énumérés ci-dessous comme étant des dangers importants qui doivent être pris en compte par l'intégrateur:

- Objets volant à partir d'outils OnRobot en raison d'une perte d'adhérence
- Objets tombant des outils OnRobot à cause d'une perte d'adhérence
- Blessures dues à des collisions entre des personnes et des pièces à usiner, des outils OnRobot, des robots ou d'autres obstacles.
- Conséquences dues au desserrage des boulons
- Conséquences si le câble des outils OnRobot reste coincé dans un quelque chose
- La pièce même représente un danger

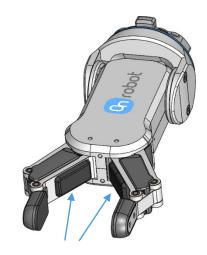
2.4 Sécurité environnementale

Les produits OnRobot A/S doivent être éliminés conformément aux lois, réglementations et normes nationales applicables.

L'utilisation de substances dangereuses a été limitée lors de la fabrication de ce produit en vue de protéger l'environnement conformément à la directive européenne RoHS 2011/65/UE. Ces substances comprennent le mercure, le cadmium, le plomb, le chrome VI, les polybromobiphényles et les polybromodiphényléthers.

Ce produit respecte les exigences nationales d'enregistrement des importateurs conformément à la directive DEEE de l'UE 2012/19/UE.

2.5 Fonction de sécurité PLd CAT3


RG2 RG6

Une fonction de sécurité a été conçue comme deux boutons aux deux bras du produit, conforme à la norme ISO 13849-1 PLd CAT3.

Cette fonction de sécurité possède un temps de réponse max. de 100 ms et un MTTF de 2883 ans.

Le comportement du système de sécurité est décrit ci-dessous :

Si les deux boutons de sécurité sont désactivés, voir l'image ci-dessous, le système de contrôle de sécurité arrête le mouvement des deux bras du produit. Le mouvement est alors empêché tant que l'un des deux boutons ou les deux restent activés.

Boutons de sécurité PLd CAT3

Si cela se produit pendant l'exécution du programme du robot, l'utilisateur peut détecter cette condition à l'aide des informations d'état fournies et exécuter les étapes nécessaires sur le robot.

Pour revenir au fonctionnement normal avec le préhenseur, des commandes sont fournies pour réinitialiser le préhenseur.

ATTENTION:

Avant de réinitialiser le préhenseur, assurez-vous toujours qu'aucune pièce ne tombera en raison de la perte de puissance de préhension. Si le Dual Quick Changer est utilisé, il émet un cycle d'alimentation pour les deux côtés.

Pour d'autres détails, se reporter au paragraphe Fonctionnement.

3 Modes de fonctionnement

Il existe deux modes alternatifs d'utilisation du ou des appareils :

Modes de fonctionnement	
	OnRobot WebLogic™ Requis dans le robot : module d'E/S numérique

OnRobot EtherNet - IP

Ce mode utilise le protocole réseau industriel EtherNet/IP pour faire fonctionner les préhenseurs/capteurs.

EtherNet/IP est un bus de terrain qui utilise le réseau Ethernet standard (un simple câble UTP, un commutateur réseau standard peut être utilisé, etc.)

Le Compute Box implémente un Scanner EtherNet/IP (maître) et requiert que le contrôleur du robot implémente un Adapter EtherNet/IP (esclave) pour fonctionner.

Selon un temps de cycle configurable (ex. : 8 ms), le Computer Box peut Assembly robot de manière à pouvoir contrôler ou surveiller les préhenseurs/le capteur.

Des fonctions globales sont fournies (sur la clé USB) pour simplifier l'accès aux caractéristiques des produits.

OnRobot WebLogic™

Ce mode permet d'utiliser une communication E/S numérique simple pour faire fonctionner les préhenseurs/capteurs.

Par exemple, le Compute Box pourrait être facilement programmée :

- lorsque l'une des sorties numériques du robot est réglée sur HAUT, le préhenseur RG2 s'ouvre à 77 mm
- ou lorsque les valeurs de force mesurées avec le QC HEX-E atteignent 50N, le Compute Box envoie une sortie numérique HIGH au robot.

Le Compute Box dispose de 8 entrées et 8 sorties numériques librement configurables pour n'importe quelle « logique ».

De cette façon, l'utilisateur peut configurer :

- huit fonctionnalités de contrôle de préhenseur/capteur (par exemple : largeur réglée sur X, fermeture, zéro, précharge réglée, etc.)
- huit fonctionnalités de surveillance de préhenseur/capteur (par exemple. : préhension détectée, est préchargé > 50N, etc.).

De plus, la « logique » peut être complexe, comme :

préhension détectée ET force >20 N

Modes de fonctionnement

Ces « logiques » peuvent être programmées via l'interface Web du Compute Box, appelé Client Web. Il ne nécessite qu'un ordinateur normal avec un navigateur.

Dans ce document, les deux modes de fonctionnement seront décrits et seront désignés sous le nom de :

- OnRobot EtherNet IP
- OnRobot WebLogic™
 - **Ⅲ** Mode I OnRobot EtherNet/IP. 12
 - **II** Mode II OnRobot WebLogic™. 63

Mode I - OnRobot EtherNet/IP

4 Installation

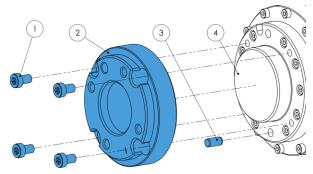
4.1 Vue d'ensemble

Pour une installation réussie, les étapes suivantes sont nécessaires :

- Monter les composants
- Configurer le logiciel

Ces étapes d'installation sont décrites aux sections suivantes.

4.2 Montage

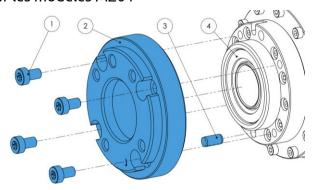

Étapes requises:

- Montez l'adaptateur dépendant du robot
- Montez l'option du Quick Changer
- Montez le ou les outil(s)

Ces trois étapes de montage sont décrites aux trois sous-sections suivantes.

4.2.1 Adaptateurs

Pour les modèles CZ10, MZ03EL, MZ07



Adaptateur I

- 1 8 vis M5 (ISO14580 A4-70)
- 2 Bride d'adaptateur OnRobot (ISO9409-1-50-4-M6)
- 3 Goupille Ø6x8 (ISO2338 h8)
- 4 Bride d'outil de robot

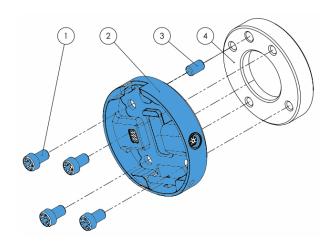
Appliquez un couple de serrage de 5 Nm.

Pour les modèles MZ04

Adaptateur J

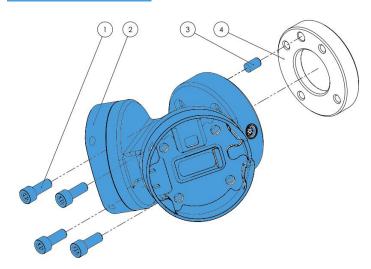
- 1 8 vis M5 (ISO14580 A4-70)
- 2 Bride d'adaptateur OnRobot (ISO940-1-50-4-M6)
- 3 Goupille Ø6x8 (ISO2338 h8)
- 4 Bride d'outil de robot

Appliquez un couple de serrage de 5 Nm.


Installation

4.2.2 Options du Quick Changer

Quick Changer -Côté robot

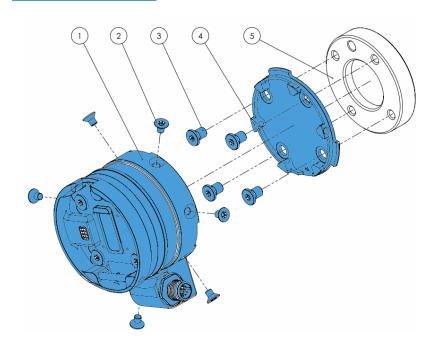


Quick Changer - Côté robot

- 1 M6x8mm (ISO14580 8.8)
- 2 Quick Changer (ISO 9409-1-50-4-M6)
- 3 Goupille Ø6x10 (ISO2338 h8)
- 4 Adaptateur/bride d'outil du robot (ISO 9409-1-50-4-M6)

Appliquez un couple de serrage de 10 Nm.

Dual Quick Changer


Dual Quick Changer

- 1 M6x20mm (ISO14580 8.8)
- 2 Dual Quick Changer
- 3 Goupille Ø6x10 (ISO2338 h8)
- 4 Adaptateur/bride d'outil du robot (ISO 9409-1-50-4-M6)

Appliquez un couple de serrage de 10 Nm.

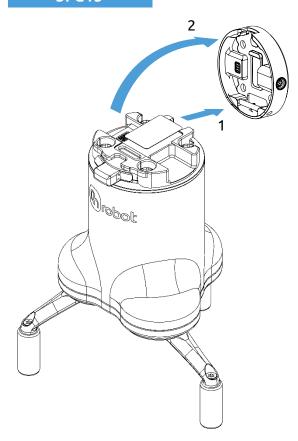
HEX-E/H QC

HEX-E/H QC

- 1 Capteur HEX-E/H QC
- 2 M4x6mm (ISO14581 A4-70)
- 3 M6x8mm (NCN20146 A4-70)
- 4 Adaptateur HEX-E/H QC
- 5 Adaptateur/bride d'outil du robot (ISO 9409-1-50-4-M6)

Appliquez un couple de serrage de 1,5 Nm pour les vis M4x6mm

Appliquez un couple de serrage de 10 Nm pour les vis M6x8mm


Installation

4.2.3 Outils

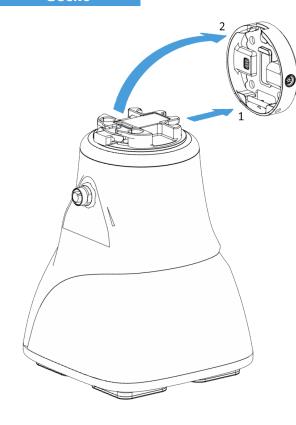
□ 3FG15	17
□ Gecko	18
□ RG2	19
□ RG2-FT	20
□ RG6	21
□ SG	22
□ VG10	22
□ VGC10	23
Quick Changer - Côté outi	l 23

3FG15

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.


Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Gecko

Étape 1:

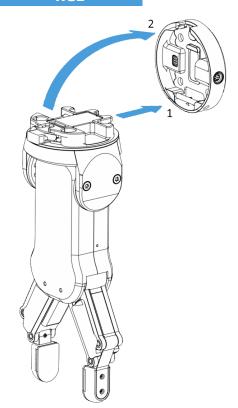
Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.



ATTENTION:

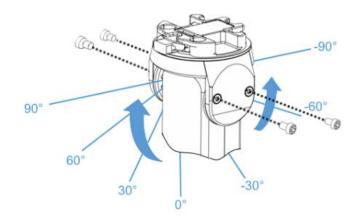
Avec un Dual Quick Changer, le Gecko Gripper peut seulement être monté sur le côté secondaire (2). Un montage sur le côté primaire (1) empêche le bon fonctionnement des dispositifs.

RG2

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

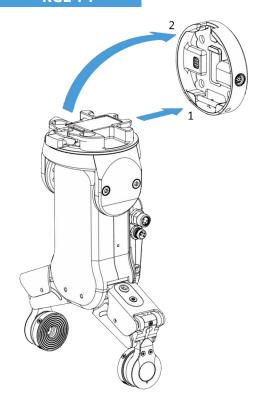

Étape 2 :

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Pour modifier l'angle relatif du préhenseur sur le Quick Changer :

- retirer d'abord les quatre vis M4x6
- incliner le préhenseur entre -90° et 90°
- reposer les quatre vis M4x6 en les serrant à 1,35 Nm pour les fixer.



AVERTISSEMENT:

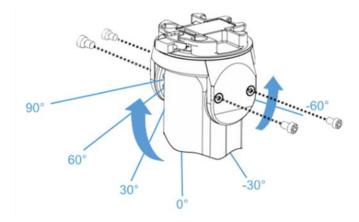
Ne jamais utiliser l'appareil lorsque l'une des quatre vis M4x6 est déposée.

RG2-FT

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

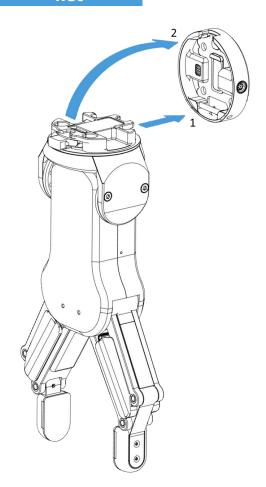

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Pour modifier l'angle relatif du préhenseur sur le Quick Changer :

- retirer d'abord les quatre vis M4x6
- incliner le préhenseur entre -60° et 90°
- reposer les quatre vis M4x6 en les serrant à 1,35 Nm pour les fixer.



AVERTISSEMENT:

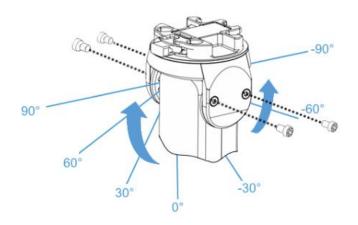
Ne jamais utiliser l'appareil lorsque l'une des quatre vis M4x6 est déposée.

RG6

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

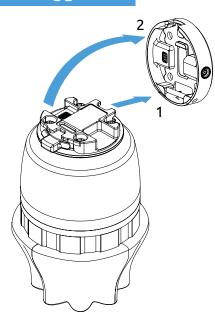

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Pour modifier l'angle relatif du préhenseur sur le Quick Changer :

- retirer d'abord les quatre vis M4x6
- incliner le préhenseur entre -90° et 90°
- reposer les quatre vis M4x6 en les serrant à 1,35 Nm pour les fixer.



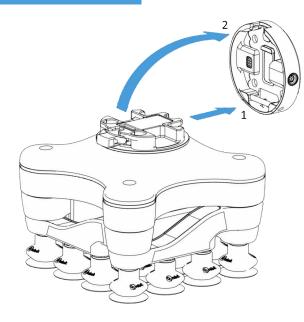
AVERTISSEMENT:

Ne jamais utiliser l'appareil lorsque l'une des quatre vis M4x6 est déposée.

SG

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.


Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

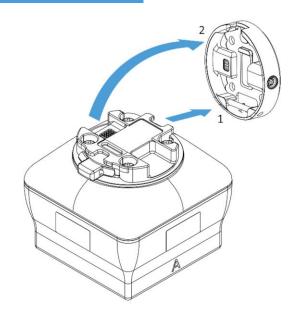
Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

VG10

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.


Étape 2:

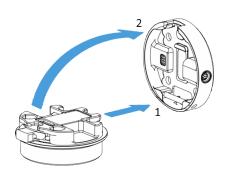
Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

VGC10

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.


Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Quick Changer -Côté outil

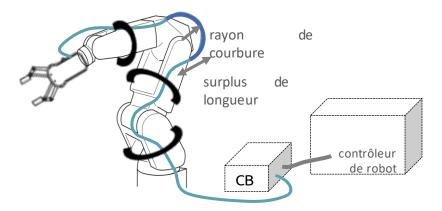
Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.


Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

4.3 Câblage

Trois types de câbles doivent être branchés pour câbler correctement le système :

- Câble de données d'outil entre le ou les outils et le Compute Box
- Câble de communication Ethernet entre le contrôleur de robot et le Compute Box
- Alimentation électrique du Compute Box

NOTE:

Pour le Quick Changer - Côté robot, nul besoin de brancher un câble.

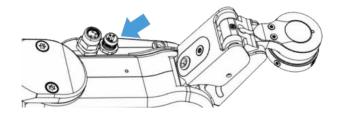
4.3.1 Câble de données d'outil

Branchez d'abord le câble de données de l'outil.

Pour les versions Single ou Dual 3FG15, RG2, RG6, SG, VG10, VGC10 ou Gecko Gripper

Utilisez le connecteur M8 à 8 broches sur le Quick Changer ou sur le Dual Quick Changer.

Utilisez le support de câble comme illustré à gauche.



ATTENTION:

Veillez à utiliser le support de câble fourni pour éviter toute contrainte excessive sur le connecteur M8 à 90 degrés causée par la rotation du câble.

Pour RG2-FT

Pour RG2-FT, le connecteur de données de l'outil Quick Changer ne peut pas être utilisé. Utilisez plutôt le connecteur M8 4 broches marqué

Pour HEX-E/H QC

Utilisez le connecteur M12 12 broches marqué sur le HEX-E/H QC.

Faites ensuite passer le câble de données de l'outil vers le Compute Box (CB) et utilisez la bande Velcro fournie (noire) pour le fixer.

NOTE:

Veillez à ce qu'une longueur supplémentaire soit utilisée au niveau des articulations pendant le routage afin que le câble ne soit pas tiré lorsque le robot se déplace.

Veillez aussi à ce que le rayon de courbure de câble soit d'au moins 40 mm (70 mm pour le HEX-E/H QC)

Enfin, connectez l'autre extrémité du câble de données de l'outil vers le connecteur DEVICES du Compute Box.

ATTENTION:

Utilisez uniquement des câbles de données d'outil OnRobot d'origine. Ne coupez pas ou ne rallongez pas ces câbles.

ATTENTION:

Quick Changer et Dual Quick Changer ne peuvent être utilisés que pour alimenter les outils OnRobot.

4.3.2 Câble Ethernet

Vous devez d'abord temporairement connecter une extrémité du câble Ethernet (UTP) fourni à votre ordinateur pour configurer le Compute Box (instructions dans la section suivante).

Vous devez ensuite la débrancher de votre ordinateur et la connecter au port Ethernet de la carte Slave EtherNet/IP du contrôleur de robot comme indiqué ci-dessous.

La carte EtherNet/IP est une carte Anybus ABS-ETN 10/100.

Connectez l'autre extrémité du câble fourni au connecteur ETHERNET du Compute Box.

ATTENTION:

Utilisez uniquement des câbles Ethernet blindés d'une longueur maximale de 3 m.

AVERTISSEMENT:

Vérifier et s'assurer que le boîtier du Compute Box (métallique) et le boîtier du contrôleur du robot (métallique) ne sont pas connectés (pas de connexion galvanique entre les deux).

4.3.3 Alimentation électrique

Branchez l'alimentation fournie sur le connecteur 24V du Compute Box.

NOTE:

Pour débrancher le connecteur d'alimentation, veillez à tirer sur le boîtier du connecteur (où sont les flèches) et non sur le câble.

ATTENTION:

N'utilisez que des alimentations OnRobot d'origine.

Installation

Enfin, mettez sous tension l'alimentation électrique qui alimentera le Compute Box et le ou les outils connectés.

4.4 Configuration du logiciel

4.4.1 Vue d'ensemble

La configuration des appareils OnRobot pour qu'ils fonctionnent avec votre robot nécessite trois étapes :

- 1. Installation du Compute Box en tant que Scanner.
- 2. Installation du robot en tant qu'Adapter.
- 3. Charger les fonctions OnRobot sur le robot.

Les accessoires matériels supplémentaires répertoriés ci-dessous sont nécessaires pour la configuration :

Composant n	natériel	Numéro d'élément
Carte EtherNet/IP	Slave	Veuillez appeler votre représentant NACHI.

NOTE:

Veuillez appeler votre représentant NACHI local pour les questions de tarifs et d'options d'achat.

NOTE:

Les termes *Scanner*, *Master*, et *Client* sont interchangeabes. Ici nous utilisons le terme **Scanner**. (Ex. le Compute Box OnRobot est un Scanner.)

Les termes *Adapter, Slave,* et *Server* sont interchangeables. Ici nous utilisons le terme **Adapter**. (Ex. le robot est un Adapter.)

4.4.2 Configuration du Compute Box en tant que Scanner

NOTE:

Le Compute Box doit être temporairement connecté à votre ordinateur.

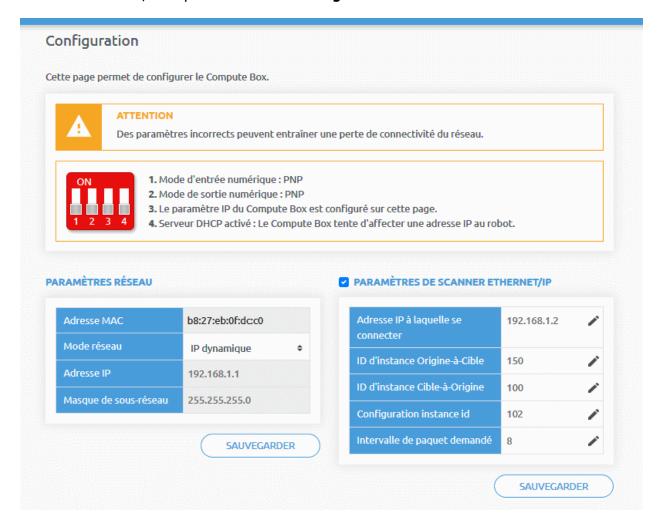
Pour configurer le Compute Box en tant que Scanner, il vous faudra accéder à l'interface Client Web du Compute Box sur votre ordinateur. Pour ce faire, l'interface Ethernet doit être configurée de manière à permettre une communication correcte entre votre ordinateur et le Compute Box. Il est recommandé d'utiliser le Mode Auto (par défaut) pour ce qui est des paramètres IP du Compute Box. Pour en savoir plus sur les modes de paramétrage IP disponibles, reportez-vous à **Configuration de l'interface Ethernet**.

Effectuez ensuite les étapes suivantes :

- Connectez le Compute Box à votre ordinateur avec le câble UTP.
- Allumez le Compute Box avec l'alimentation fournie
- Attendez une minute que la LED du Compute Box passe du bleu au vert.
- Ouvrez un navigateur web sur votre ordinateur et saisissez l'adresse IP du Compute Box (l'adresse par défaut est 192.168.1.1).

La page de connexion s'ouvre :

La connexion administrateur par défaut est :


Nom d'utilisateur : admin Mot de passe : OnRobot

Un mot de passe doit être saisi pour la première connexion : (le mot de passe doit comporter au moins 8 caractères)

Une fois connecté, clicliquez sur le menu Configuration.

Cochez la case **Paramètres de scanner EtherNet/IP** et définissez les valeurs indiquées cidessus :

- Adresse IP à laquelle se connecter : Adresse IP du robot (si vous utilisez les valeurs par défaut, entrez 192.168.1.2)
- ID d'instance Origine-à-Cible: 150
- ID d'instance Cible-à-Origine : 100
- ID d'instance de configuration : 102
- Intervalle de paquet demandé (ms) : 8

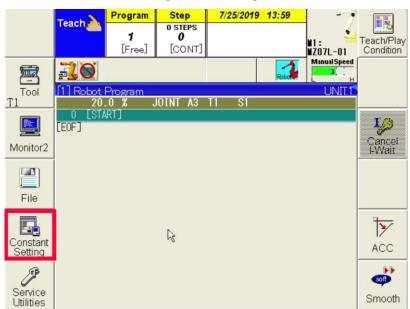
Enfin, cliquez sur le bouton **Sauvegarder** pour enregistrer les nouveaux paramètres.

NOTE:

À présent, débranchez le câble UTP de votre ordinateur et rebranchez-le au robot.

4.4.3 Configuration du robot en tant qu'Adapter

Pour accéder aux paramètres de communication, il vous faut le niveau de protection **Expert** ou **Specialist**.

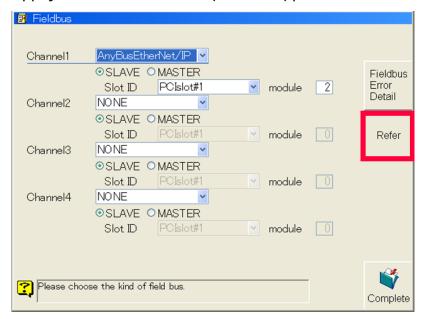

Pour changer le niveau de protection, appuyez sur le bouton puis tapez **314** et appuyez sur (Entrée).

Le mot de passe par défaut est 12345.

Le bus de terrain Fieldbus peut maintenant être initialisé.

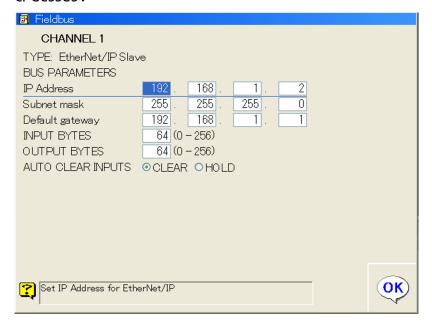
Allez à Constant setting (Paramétrage constant) > Communication > Fieldbus.

Sélectionnez la carte EtherNet/IP installée dans votre contrôleur de robot pour le canal 1 (dans le cas présent **AnyBusEtherNet/IP**).



NOTE:

La carte AnyBus EtherNet/IP peut être mappée dans un canal autre que le premier, mais ici OR_init (..., fieldbusCH) doit être défini en conséquence. Pour plus d'informations sur les canaux, consultez le document FD CONTROLLER INSTRUCTION MANUAL EtherNet/IP Function – (TFDEN-122-005_EtherNetIP.pdf / Chapitre 3.1.x).


Définissez-la sur **SLAVE**, comme vous pouvez le voir ci-dessus. Le **Slot ID** (ID de connecteur) et le numéro de **module** dans le connecteur de PCI doivent être définis en fonction de votre configuration.

Appuyez sur le bouton **Refer** (Référence) pour définir l'adresse IP du robot.

Définissez l'adresse IP de sorte qu'elle soit sur le même sous-réseau que le Compute Box.

Si vous utilisez les paramètres IP par défaut sur le Compute Box, vous pouvez utiliser les valeurs ci-dessus :

Installation

Veillez à définir **INPUT BYTES** (Octets d'entrée) et **OUTPUT BYTES** (Octets de sortie) sur 64 puis cliquez sur et sur pour enregistrer les modifications.

4.4.4 Chargement des fonctions OnRobot sur le robot

Pour faciliter l'utilisation des produits OnRobot, des fonctions de haut niveau ont été inscrites dans le fichier USERPROC. INC. Certains paramètres obligatoires, à configurer, sont stockés dans PUBLIC. INC. Tous se trouvent sur la clé USB fournie.

Chargement du fichier USRPROC. INC d'OnRobot sur le robot à l'aide de l'application **FD on Desk** :

- Chargez les fichiers PUBLIC. INC et USRPROC. INC dans l'application FD on Desk
- Compilez USERPROC. INC
- Chargez chaque fichier sur le robot en utilisant Date transfer / PC -> Controller (Transfert de données / PC -> Contrôleur)
- Redémarrez le robot

NOTE:

Veillez à conserver une sauvegarde de vos fichiers USERPROC. INC et PUBLIC. INC si vous les avez personnalisés.

L'installation est terminée.

5 Fonctionnement

NOTE:

On suppose que l'installation s'est correctement terminée. Si ce n'est pas le cas, effectuez d'abord les étapes d'installation de la section précédente.

5.1 Vue d'ensemble

Pour faciliter l'utilisation des produits OnRobot, des fonctions de haut niveau ont été inscrites dans le fichier USERPROC. INC. Certains paramètres obligatoires, à configurer, sont stockés dans PUBLIC. INC. . Tous sont chargés sur le robot lors de l'installation.

Ces fonctions de haut niveau peuvent être utilisées en appelant ces procédures d'utilisateur dans votre programme :

CallProc OR RGx move (instance, width, force, waitfor)

Tout programme utilisateur doit démarrer en appelant la fonction OR_init(). Elle est utilisée pour définir les outils montés sur le robot, dans leur configuration.

ATTENTION:

L'appel de OR_init () avec des paramètres ne correspondant pas à ou aux outils installés peut entraîner un comportement anormal.

5.2 Liste de fonctions

NOTE:

Pour appeler une fonction (procédure utilisateur), toutes les entrées doivent être définies en tant que variable dans un premier temps, dans la mesure où il est impossible d'utiliser des nombres directement.

Nom de fonction :	OR_init(toolCfgID, fieldbusCH)			
	Nom	Туре	Description	
Entrée :	toolCfgID	nombre entier	101 : utilisation d'un préhenseur simple uniquement 102 : utilisation de capteur HEX + nombre quelconque de préhenseurs simples (ou aucun) 103 : utilisation de Dual QC avec deux préhenseurs	
	fieldbusCH	nombre entier	Canal Fieldbus : 1 si le Canal 1 est utilisé 2 si le Canal 2 est utilisé 3 si le Canal 3 est utilisé 4 si le Canal 4 est utilisé	
Sortie:	-	-	-	
Description :	Fonction d'initialisation de la communication pour les outils actuellement utilisés. Assurez-vous que cette fonction soit appelée avant d'en utiliser une autre.			
Exemple:	cfgID = 102 'HEX utilisé avec VGx fbCH = 1 'Le canal Fieldbus 1 est utilisé CallProc OR_init (cfgID, fbCH)		lbus 1 est utilisé	

□ 3FG15	37
☐ Gecko	43
☐ HEX-E/H QC	46
□ RG2-FT	47
□ RG2/6	52
□ SG	54
□ VG10 / VGC10	60

3FG15

Nom de fonction :	OR_TFG_move(instance, diameter, wait)			
	Nom	Туре	Description	
	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Entrée:	diameter	nombre entier	diamètre cible (mm)	
	wait	nombre entier	0 : retour immédiat 1 : retour après exécution de la commande	
Sortie:	-	-	-	
	'			
Description:	Déplacer le préhenseur au diamètre spécifique (mm)			
Exemple:	<pre>instance = 1 diameter = 50 wait = 1 CallProc OR TFG move(instance, diameter, wait)</pre>			

Nom de fonction :	OR_TFG_grip(instance, diameter, force, control, wait)				
	Nom	Туре	Description		
	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double		
	diameter	nombre entier	diamètre cible (mm)		
Entrée:	force	nombre entier	force cible (0-100 %)		
	control	nombre entier	1 : préhension interne 2 : préhension externe		
	wait	nombre entier	0 : retour immédiat 1 : retour après exécution de la commande		
Sortie:	-	-	-		
Description:	Saisir la pièce au diamètre extérieur ou intérieur spécifié (en mm) à la force spécifiée (%)				
	<pre>instance = 1 diameter = 50 force = 40</pre>				
Exemple:	control = 2				
	<pre>wait = 1 CallProc OR_TFG_grip(instance, diameter, force, control, wait)</pre>				

Nom de fonction:	OR_TFG_getDiaR(instance)		
	Nom	Type	Description
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier	Diamètre brut actuel (mm)
Description:	Obtenir le diamètre brut (mm)		
Exemple:	<pre>instance = 1 CallProc raw_diameter = OR_TFG_getDiaR(instance)</pre>		

Nom de fonction:	OR_TFG_ getMxD(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	diamètre maxi (mm)	
Description:	Obtenir le diamètre maxi (mm)			
Exemple:	<pre>instance = 1 CallProc max diameter = OR TFG getMxD(instance)</pre>			

Nom de fonction :	OR_TFG_ go	OR_TFG_ getMnD(instance)			
	Nom	Туре	Description		
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double		
Sortie:	-	nombre entier	diamètre mini (mm)		
Description:	Obtenir le diamètre mini (mm)				
Exemple:		<pre>instance = 1 CallProc min_diameter = OR_TFG_getMnD(instance)</pre>			

Nom de fonction:	OR_TFG_setFToffset(instance, radius)			
	Nom	Type	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
	radius	réel	rayon de doigt (0,0-50,0 mm)	
Sortie:	-	-	-	
Description:	Définir le décalage de doigt (mm)			
Exemple:	<pre>instance = 1 radius = 6.5 CallProc OR_TFG_setFToffset(instance, radius)</pre>			

Nom de fonction :	OR_TFG_setfingerlength(instance, length)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
	length	nombre entier	longueur de doigt (mm)	
Sortie:	-	-	-	
Description:	Définir la longueur de doigt (mm)			
Exemple:	<pre>instance = 1 length = 20 CallProc OR TFG setfingerlength(instance, length)</pre>			

Nom de fonction:	OR_TFG_setfingerPos(instance, length)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
	position	nombre entier	position de doigt (1 - 3)	
Sortie:	-	-	-	
Description:	Définir la position de montage de doigt (1-3)			
Exemple:	<pre>instance = 1 position = 2 CallProc OR_TFG_setfingerPos(instance, position)</pre>			

Nom de fonction:	OR_TFG_isConn(instance)			
	Nom	Type	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : pas connecté 1 : connecté	
Description:	Vérifier la connexion du préhenseur			
Exemple:	<pre>instance = 1 CallProc connected = OR_TFG_isConn(instance)</pre>			

Nom de fonction :	OR_TFG_isBusy(instance)		
	Nom	Туре	Description
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier	0 : inactif 1 : occupé
Description:	Vérifier si le préhenseur est occupé ou inactif		
Exemple:	instance = 1 CallProc connected = OR TFG isBusy(instance)		

Nom de fonction :	OR_TFG_is	OR_TFG_isGrip(instance)			
	Nom	Туре	Description		
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double		
Sortie:	-	nombre entier	0 : pas de préhension 1 : préhension détectée		
Description:	Vérifier qu'une préhension est détectée				
Exemple:		<pre>instance = 1 CallProc gripped = OR_TFG_isGrip(instance)</pre>			

Nom de fonction:	OR_TFG_isFGrip(instance)		
	Nom	Type	Description
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier	0 : pas de préhension 1 : préhension détectée
Description:	Vérifier la force de préhension détectée (la force cible est atteinte)		
Exemple:	<pre>instance = 1 CallProc forcegrip = OR TFG isFGrip(instance)</pre>		

Nom de fonction :	OR_TFG_calVal(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : non 1 : oui	
Description:	Validation de l'étalonnage			
Exemple:		instance = 1 CallProc calibvalid = OR TFG calVal(instance)		

Nom de fonction :	OR_TFG_ha	OR_TFG_has_safetyDCerror(instance)			
	Nom	Туре	Description		
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double		
Sortie:	-	nombre entier	0 : pas d'erreur 1 : erreur		
Description:	Renvoie un état d'erreur CC de sécurité				
Exemple:	<pre>instance = 1 CallProc error = OR_TFG_has_safetyDCerror(instance)</pre>				

Nom de fonction:	OR_TFG_getDiaFT(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	Diamètre actuel (mm)	
	· · · · · ·			
Description:	Renvoie le diamètre actuel (diamètre avec bouts de doigts décalés)			
Exemple:		<pre>instance = 1 CallProc diameterFT = OR TFG getDiaFT(instance)</pre>		

Nom de fonction:	OR_TFG_getForce(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	Force actuelle (N)	
Description:	Obtenir la force actuelle			
Exemple:		instance = 1 CallProc getforce = OR TFG getForce(instance)		

Nom de fonction:	OR_TFG_Stop(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	-	-	
Description:	Arrête le mouvement des doigts en cours			
Exemple:	<pre>instance = 1 CallProc OR_TFG_Stop(instance)</pre>			

Gecko

Nom de fonction:	OR_Gecko_padOut(instance, wait)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
	wait	nombre entier	0 : retour après exécution d'une commande 1 : retour après que les coussinets ont atteint la position finale	
Sortie:	-	-	-	
Description:	Déplacer les coussinets Gecko vers l'extérieur.			
Exemple:	<pre>instance = 1 waitFor = 1 CallProc OR_Gecko_padOut(instance, waitFor)</pre>			

Nom de fonction :	OR_Gecko_padIn(instance, wait)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
	wait	nombre entier	0 : retour après exécution d'une commande 1 : retour après que les coussinets ont atteint la position finale	
Sortie:	-	-	-	
Description:	Déplacer les coussinets Gecko vers l'intérieur.			
Exemple:	<pre>instance = 1 waitFor = 1 CallProc OR_Gecko_padIn(instance, waitFor)</pre>			

Nom de fonction:	OR_Gecko_getF(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	Le préhenseur mesure la force de précharge en N	
Description:	Récupérer la force de précharge du préhenseur.			
Exemple:	<pre>instance = 1 CallProc preload_force = OR_Gecko_getF(instance)</pre>			

Nom de fonction:	OR_Gecko_getUS(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	Le capteur à ultrasons mesure la distance en mm	
Description:	Récupérer les données du capteur à ultrasons (distance mesurée).			
Exemple:	<pre>instance = 1 CallProc ultrasonic_value = CallProc OR_Gecko_getUS(instance)</pre>			

Nom de fonction:	OR_Gecko_isConn(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : préhenseur non connecté 1 : préhenseur connecté	
Description:	Vérifie si le préhenseur est connecté ou non.			
Exemple:	<pre>instance = 1 CallProc gecko_connected = OR_Gecko_isConn(instance)</pre>			

Nom de fonction:	OR_Gecko_isPart(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : pièce non détectée 1 : pièce détectée	
Description:	Vérifie si une pièce (un objet) est détectée ou non.			
Exemple:	<pre>instance = 1 CallProc part_detected = OR_Gecko_isPart(instance)</pre>			

Nom de fonction:	OR_Gecko_padSt(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : coussinets en bon état 1 : coussinets usés	
Description:	Vérifie l'état d'usure des coussinets.			
Exemple:	<pre>instance = 1 CallProc OR_Gecko_padSt(instance)</pre>			

Nom de fonction :	OR_Gecko_padPos(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : les coussinets sont déplacés vers l'intérieur 1 : les coussinets sont déplacés vers l'extérieur	
Description:	Vérifie la position des coussinets.			
Exemple:		instance = 1 CallProc OR_Gecko_padPos(instance)		

HEX-E/H QC

Nom de fonction:	OR_HEX_get(FT_type)			
	Nom	Туре	Description	
Entrée:	FT_type	chaîne	Valeur de force/couple demandée. Entrées valides : « Fx », « Fy », « Fz », « Tx », « Ty », « Tz »	
Sortie:	-	nombre entier	Valeur de force/couple demandée. Les forces sont en 1/10 N, les couples en 1/100 Nm	
Description:	Récupérer la valeur de force/couple actuelle du capteur HEX.			
Exemple:		FT_type = "Fx" CallProc Fx_value = OR_HEX_get(FT_type)		

Nom de fonction:	OR_HEX_zero()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	-	-	
Description:	Mise à zéro du capteur HEX. (Utiliser les valeurs de force/couple actuelles comme décalage, ces valeurs seront de zéro.)			
Exemple:	CallProc	CallProc OR_HEX_zero()		

Nom de fonction:	OR_HEX_unzero()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	-	-	
	·			
Description:	Mise à non-zéro du capteur HEX. (Réinitialiser le décalage.)			
Exemple:	CallProc	CallProc OR_HEX_unzero()		

Nom de fonction:	OR_HEX_isConn()			
Entrée:	Nom	Туре	Description	
	-	-	-	
Sortie:	-	nombre entier	0 : capteur non connecté 1 : capteur connecté	
Description:	Vérifie si HEX est connecté ou non.			
Exemple:	CallProc OR_HEX_isConn()			

RG2-FT

Nom de fonction:	OR_RG2FT_move(width, force, wait)			
	Nom	Туре	Description	
Entrée :	width	nombre entier	Définir la distance en mm	
	force	nombre entier	Définir la force de préhension en N	
	wait	nombre entier	0 : retour après exécution de la commande (sans attendre de mouvement des doigts du préhenseur) 1 : retour après que les doigts ont atteint la position	
Sortie:	-	-	-	
Description:	Ouverture/fermeture du préhenseur.			
Exemple:	<pre>width = 50 force = 20 waitFor = 1 CallProc OR_RG2FT_move(width, Force, waitFor)</pre>			

Nom de fonction:	OR_RG2FT_stop()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	-	-	
	·			
Description:	Arrêter le mouvement du préhenseur.			
Exemple:	CallProc	CallProc OR_RG2FT_stop()		

Nom de fonction:	OR_RG2FT_pOffsAct()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	-	-	
Description:	Définir les valeurs actuelles comme décalage pour les capteurs de proximité. (La valeur de distance actuelle sera zéro.)			
Exemple:	CallProc	CallProc OR_RG2FT_pOffsAct()		

Nom de fonction:	OR_RG2FT_pOffsVal(valueL, valueR)			
	Nom	Туре	Description	
Entrée :	valueL	nombre entier	Valeur de décalage personnalisé de proximité côté gauche en mm	
	valueR	nombre entier	Valeur de décalage personnalisé de proximité côté droit en mm	
Sortie:	-	-	-	
	· · · · · · · · · · · · · · · · · · ·			
Description:		Définit les valeurs de décalage personnalisé pour les capteurs de proximité.		
	leftOffse	leftOffset = 10		
Exemple:	rightOffset = 15			
	CallProc OR RG2FT pOffsVaL(leftOffset, rightOffset)			

Nom de fonction:	OR_RG2FT_hexZero()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	-	-	
Description:	Mise à zéro des capteurs HEX (des valeurs actuelles de force/couple seront utilisées comme décalage).			
Exemple:	CallProc	CallProc OR_RG2FT_hexZero()		

Nom de fonction:	OR_RG2FT_hexUnzero()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	-	-	
Description:	Mise à non-zéro des valeurs des capteurs HEX (le décalage sera réinitialisé à zéro).			
Exemple:	CallProc OR_RG2FT_hexUnzero()			

Nom de fonction:	OR_RG2FT_getLProx()		
	Nom	Туре	Description
Entrée:	-	-	-
Sortie:	-	nombre entier	Distance de capteur de proximité gauche mesurée en mm
Description:	Obtenir la valeur de capteur de proximité gauche.		
Exemple:	CallPorc	lProxVal	= OR_RG2FT_getLProx()

Nom de fonction:	OR_RG2FT_getRProx()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	nombre entier	Distance de capteur de proximité droit mesurée en mm	
Description:	Obtenir la valeur de capteur de proximité droit.			
Exemple:	CallProc	CallProc rProxVal = OR_RG2FT_getRProx()		

Nom de fonction:	OR_RG2F	OR_RG2FT_getHex(ft_type)			
	Nom	Туре	Description		
			Valeur de force/couple demandée. Entrées valides :		
Entrée :	ft_type	chaîne	« rFx », « rFy », « rFz », « rTx », « rTy », « rTz » (valeurs F/T côté droit)		
			« lFx », « lFy », « lFz », « lTx », « lTy », « lTz » (valeurs F/T côté gauche)		
Sortie:	-	nombre entier	Valeur de force ou de couple demandée. Les valeurs de force sont en 1/10 N, les valeurs de couple en 1/100 Nm.		
Description:	Récupérer la valeur de force/couple des capteurs HEX.				
Exemple:		FT_type = "lFz" 'Obtenir la valeur de force HEX sur l'axe Z CallProc left_Fz = OR_RG2FT_getHex_f (FT_type)			

Nom de fonction :	OR_RG2FT_getWidth()		
	Nom	Туре	Description
Entrée:	-	-	-
Sortie:	-	nombre entier	Largeur réelle de préhenseur en mm
Description:	Obtenir la distance actuelle des bouts des doigts du préhenseur.		
Exemple:	CallProc	act_width	n = OR_RG2FT_getWidth()

Nom de fonction:	OR_RG2FT_isConn()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	nombre entier	0 : préhenseur non connecté 1 : préhenseur connecté	
Description:	Vérifie si RG2FT est connecté ou non.			
Exemple:	CallProc	CallProc connected = OR_RG2FT_isConn()		

Nom de fonction:	OR_RG2FT_isBusy()		
	Nom	Туре	Description
Entrée:	-	-	-
Sortie:	-	nombre entier	0 : préhenseur en veille 1 : préhenseur occupé
Description:	Vérifie l'état du préhenseur (occupé ou en veille).		
Exemple:	CallProc	gripper_b	ousy = OR_RG2FT_isBusy()

Nom de fonction :	OR_RG2FT_isGrip()			
	Nom	Туре	Description	
Entrée:	-	-	-	
Sortie:	-	nombre entier	0 : préhension non détectée 1 : préhension détectée	
		·		
Description:	Vérifie la présence d'une préhension (objet saisi ou non).			
Exemple:	CallProc	grip_dete	ected = OR_RG2FT_isGrip()	

RG2/6

Nom de fonction :	OR_RGx_move(instance, width, force, wait)			
	Nom	Туре	Description	
	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
	width	nombre entier	Définir la distance en mm	
Entrée :	force	nombre entier	Définir la force de préhension en N	
	wait	nombre entier	0 : retour après exécution de la commande (sans attendre de mouvement des doigts du préhenseur) 1 : retour après que les doigts ont atteint la position	
Sortie:	-	-	-	
Description:	Ouverture/fermeture du préhenseur.			
Exemple:	<pre>instance = 1 width = 50 force = 20 waitFor = 1 CallProc OR_RG2FT_move (instance, width, force, waitFor)</pre>			

Nom de fonction:	OR_RGx_isConn(instance)		
	Nom	Туре	Description
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier	0 : préhenseur non connecté 1 : préhenseur connecté
Description:	Vérifie si RGx est connecté ou non.		
Exemple:	<pre>instance = 1 CallProc RG connected = OR RGx isConn(instance)</pre>		

Nom de fonction:	OR_RGx_isGrip(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : préhension non détectée 1 : préhension détectée (quelque chose est saisi)	
	·			
Description:	Vérifie la préhension (pièce saisie ou non).			
Exemple:		instance = 1 CallProc RG_grip = OR_RGx_isGrip(instance)		

Nom de fonction :	OR_RGx_isBusy(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	1	nombre entier	0 : veille 1 : occupé (doigts en mouvement)	
Description:	Vérifie l'état du préhenseur (occupé ou en veille).			
Exemple:		instance = 1 CallProc RG busy = OR RGx isBusy(instance)		

Nom de fonction:	OR_RGx_isSSOn(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : interrupteur de sécurité non déclenché, fonctionnement normal 1: interrupteur de sécurité déclenché, préhenseur désactivé	
Description:	Vérifie l'état de l'interrupteur de sécurité.			
Exemple:	<pre>instance = 1 CallProc safetyswitchOn = OR_RGx_isSSOn(instance)</pre>			

SG

Nom de fonction:	OR_SG_Init	OR_SG_Init(instance, tool ID, wait)			
	Nom	Туре	Description		
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double		
	tool_ID	nombre entier	1 : Aucun 2 : SG-a-H 3 : SG-a-S 4 : SG-b-H		
	wait	nombre entier	0 : retour immédiat 1 : retour après exécution de la commande		
Sortie:		nombre entier	0 : Succès 1 : Échec 2 : Temporisation		
Description:	Initialise le préhenseur avec l'ID outil et déplace le préhenseur vers la position initiale de l'outil				
Exemple:	tool_id = wait = 1	instance = 1 tool_id = 2			

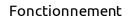
Nom de fonction:	OR_SG_grip(instance, width, grip type, wait)		
	Nom	Туре	Description
	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Entrée :	width	nombre entier	largeur cible (mm)
	control	nombre entier	1 : avec préhension douce 2 : sans préhension douce
	wait	nombre entier	0 : retour immédiat 1 : retour après exécution de la commande
Sortie:	-	nombre entier	0 : Succès 1 : Échec 2 : Temporisation
Description:	Saisir la pièce par un déplacement à la largeur désignée (en mm) avec le type de préhension spécifié (une préhension douce ralentit le préhenseur quand il s'approche de la largeur cible)		
Exemple:	<pre>instance = 1 width = 50 griptype = 2 wait = 1 CallProc gripRet = OR_SG_grip(instance, width, griptype, wait)</pre>		

Nom de fonction:	OR_SG_release(instance, width, wait)			
	Nom	Туре	Description	
	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Entrée:	width	nombre entier	largeur cible (mm)	
	wait	nombre entier	0 : retour immédiat 1 : retour après exécution de la commande	
Sortie:	-	nombre entier	0 : Succès 1 : Échec 2 : Temporisation	
Description:	Relâcher l'ol	Relâcher l'objet par un déplacement à la largeur désignée (mm)		
Exemple:	<pre>instance = 1 width = 50 wait = 1 CallProc releaseRet = OR SG release(instance, width, wait)</pre>			

Nom de fonction:	OR_SG_home(instance, wait)		
	Nom	Туре	Description
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
	wait	nombre entier	0 : retour immédiat 1 : retour après exécution de la commande
Sortie:	-	nombre entier	0 : Succès 1 : Échec 2 : Temporisation
Description:	Déplacer le préhenseur à sa position initiale		
Exemple:	<pre>instance = 1 wait = 1 CallProc homeRet = OR_SG_home(instance, wait)</pre>		

Nom de fonction :	OR_SG_Stop(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	-	-	
Description:	Arrête le déplacement en cours			
Exemple:		instance = 1 CallProc OR_SG Stop(instance)		

Nom de fonction :	OR_SG_isConn(instance)		
	Nom	Туре	Description
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier	0 : pas connecté 1 : connecté
Description:	Renvoie l'état de connexion		
Exemple:	<pre>instance = CallProc c</pre>		= OR SG isConn(instance)



Nom de fonction:	OR_SG_isBusy(instance)		
	Nom	Type	Description
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier	0 : inactif 1 : occupé
	· · ·		
Description:	Renvoie l'état occupé		
Exemple:	<pre>instance = 1 CallProc busy = OR_SG_isBusy(instance)</pre>		

Nom de fonction:	OR_SG_isInit(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : Pas initialisé 1 : Initialisé	
Description:	Renvoie l'état d'initialisation			
Exemple:		<pre>instance = 1 CallProc initialized = OR SG isInit(instance)</pre>		

Nom de fonction :	OR_SG_hasErr(instance)			
	Nom	Туре	Description	
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	0 : pas d'erreur 1 : erreur	
Description:	Renvoie l'état d'erreur			
Exemple:		<pre>instance = 1 CallProc error = OR_SG_hasErr(instance)</pre>		

Nom de fonction:	OR_SG_getWid(instance)		
	Nom	Туре	Description
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier	Largeur (mm)

Description:	Renvoie la largeur d'outil actuelle (mm)		
Exemple:	<pre>instance = 1 CallProc width = OR_SG_getWid(instance)</pre>		

Nom de fonction:	OR_SG_ getMaxWid(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	largeur de préhenseur maxi (mm)	
Description:	Renvoie la la	Renvoie la largeur maxi d'outil actuelle (mm)		
Exemple:		instance = 1 CallProc max width = OR SG getMaxWid(instance)		
Nom de	OR_SG_ getMinWid(instance)			
fonction:	OR_SG_ get	:MinWid(in	stance)	
fonction:	OR_SG_ get Nom	:MinWid(in: Type	Description	
fonction: Entrée:			I	
	Nom	Type nombre	Description 1: simple ou primaire - dans une configuration double	
Entrée :	Nom	Type nombre entier nombre	Description 1: simple ou primaire - dans une configuration double 2: secondaire dans une configuration double	
Entrée :	Nom instance	Type nombre entier nombre entier	Description 1: simple ou primaire - dans une configuration double 2: secondaire dans une configuration double	

Nom de fonction:	OR_SG_getDep(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	-	nombre entier	Profondeur (mm)	
Description:	Distance que le robot (grâce à la compensation de profondeur) a parcourue le long de l'axe z de l'outil avec comme référence le préhenseur à 0 mm de largeur			
Exemple:		<pre>instance = 1 CallProc depth = OR_SG_getDep(instance)</pre>		

Nom de fonction:	OR_SG_ getRelDep(instance)			
	Nom	Type	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	- nombre entier Profondeur relative (mm)			
Description:	Distance que le robot (grâce à la compensation de profondeur) a parcourue le long de l'axe z de l'outil avec comme référence la largeur précédente de préhenseur			
Exemple:	<pre>instance = 1 CallProc rel_depth = OR_SG_getRelDep(instance)</pre>			

Nom de fonction:	OR_SG_ getSilDep(instance)			
	Nom	Туре	Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double	
Sortie:	- nombre entier Profondeur de silicone (mm)			
Description:	Distance le long de l'axe z de l'outil vers le bord de l'outil en silicone, avec comme référence la face interne du préhenseur perpendiculaire à l'axe z de l'outil			
Exemple:	<pre>instance = 1 CallProc sil depth = OR SG getSilDep(instance)</pre>			

VG10 / VGC10

Nom de fonction:	OR_VG10_grip(instance, chA_vacuum, chB_vacuum, wait)				
	Nom	Туре	Description		
	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double		
Fahaia	chA_vacuum	nombre entier	Niveau de vide requis pour le canal A en %, définir 0 pour relâcher		
Entrée:	chB_vacuum	nombre entier	Niveau de vide requis pour le canal B en %, définir 0 pour relâcher		
	wait	nombre entier	Attendre que le vide atteigne le niveau requis 0 : ne pas attendre de vide 1: attendre que le vide atteigne le niveau requis		
Sortie:	-	-	-		
Description:	Définir le vide requis pour les canaux ou relâcher la pièce saisie.				
Exemple:	<pre>instance = 1 vacuumA = 20 vacuumB = 20 waitFor = 1</pre>				
	CallProc OR_VG10_grip(instance, vacuumA, vacuumB, waitFor)				

Nom de fonction:	OR_VG10_getVacA(instance)				
	Nom	Nom Type Description			
Entrée :	instance nombre entier 1: simple ou primaire - dans une configuration double 2: secondaire dans une configuration double				
Sortie:	- Nombre entier Niveau de vide du canal A en %		Niveau de vide du canal A en %		
Description:	Obtenir le niveau de vide actuel du canal A.				
Exemple:	<pre>instance = 1 CallProc vacuum_A = OR_VG10_getVacA(instance)</pre>				

Nom de fonction:	OR_VG10_getVacB(instance)		
	Nom	Nom Type Description	
Entrée:	instance	instance entier 1: simple ou primaire - dans une configuration double 2: secondaire dans une configuration double	
Sortie:	-	Nombre entier Niveau de vide du canal B en %	
Description:	Obtenir le niveau de vide actuel du canal B.		
Exemple:	<pre>instance = 1 CallProc vacuum_B = OR_VG10_getVacB(instance)</pre>		

Nom de fonction:	OR_VG10_setCur(instance, current)				
	Nom	Туре	Description		
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double		
	current	nombre entier	Limite de courant pour VG10 en mA. Valide dans la plage 100-1000 mA.		
Sortie:	-	-			
	'				
Description:	Définir la limite de courant pour VG10.				
Exemple:	<pre>instance = 1 current = 600 'mA CallProc OR_VG10_setCur(instance, current)</pre>				

Nom de fonction:	OR_VG10_getCur(instance)		
	Nom	Туре	Description
Entrée :	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier Limite de courant en mA	
Description:	Obtenir la limite de courant configurée.		
Exemple:	<pre>instance = 1 CallProc act_current_lim = OR_VG10_setCur(instance)</pre>		

Nom de fonction:	OR_VG10_isConn(instance)		
	Nom	Nom Type Description	
Entrée:	instance	nombre entier	1 : simple ou primaire - dans une configuration double 2 : secondaire dans une configuration double
Sortie:	-	nombre entier 0 : préhenseur non connecté 1 : VG10 est connecté 2 : VGC10 est connecté	
Description:	Vérifie si VG10 est connecté ou non.		
Exemple:	CallProc vg10_connected = OR_VG10_isConn()		

Mode II - OnRobot WebLogic™

6 Installation

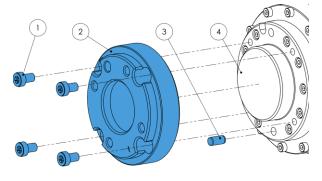
6.1 Vue d'ensemble

Pour une installation réussie, les étapes suivantes sont nécessaires :

- Monter les composants
- Configurer le logiciel

Ces étapes d'installation sont décrites aux sections suivantes.

6.2 Montage

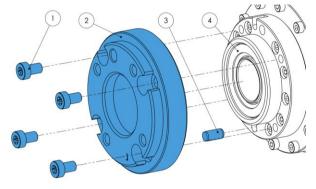

Étapes requises:

- Montez l'adaptateur dépendant du robot
- Montez l'option du Quick Changer
- Montez le ou les outil(s)

Ces trois étapes de montage sont décrites aux trois sous-sections suivantes.

6.2.1 Adaptateurs

Pour les modèles CZ10, MZ03EL, MZ07



Adaptateur I

- 1 8 vis M5 (ISO14580 A4-70)
- 2 Bride d'adaptateur OnRobot (ISO9409-1-50-4-M6)
- 3 Goupille Ø6x8 (ISO2338 h8)
- 4 Bride d'outil de robot

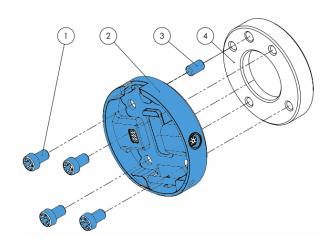
Appliquez un couple de serrage de 5 Nm.

Pour les modèles MZ04

Adaptateur J

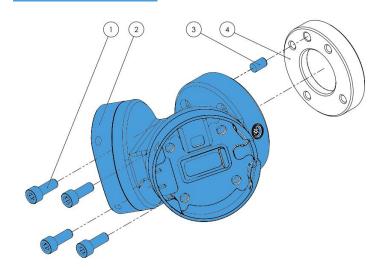
- 1 8 vis M5 (ISO14580 A4-70)
- 2 Bride d'adaptateur OnRobot (ISO940-1-50-4-M6)
- 3 Goupille Ø6x8 (ISO2338 h8)
- 4 Bride d'outil de robot

Appliquez un couple de serrage de 5 Nm.


Installation

6.2.2 Options du Quick Changer

Quick Changer -Côté robot

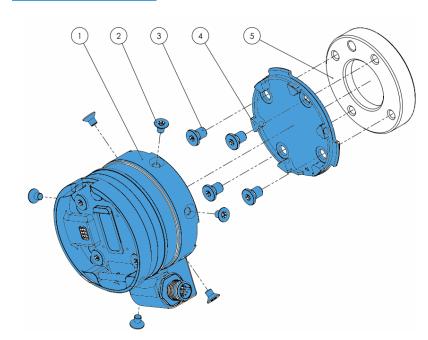


Quick Changer - Côté robot

- 1 M6x8mm (ISO14580 8.8)
- 2 Quick Changer (ISO 9409-1-50-4-M6)
- 3 Goupille Ø6x10 (ISO2338 h8)
- 4 Adaptateur/bride d'outil du robot (ISO 9409-1-50-4-M6)

Appliquez un couple de serrage de 10 Nm.

Dual Quick Changer


Dual Quick Changer

- 1 M6x20mm (ISO14580 8.8)
- 2 Dual Quick Changer
- 3 Goupille Ø6x10 (ISO2338 h8)
- 4 Adaptateur/bride d'outil du robot (ISO 9409-1-50-4-M6)

Appliquez un couple de serrage de 10 Nm.

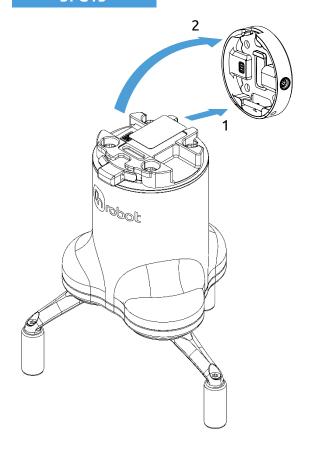
HEX-E/H QC

HEX-E/H QC

- 1 Capteur HEX-E/H QC
- 2 M4x6mm (ISO14581 A4-70)
- 3 M6x8mm (NCN20146 A4-70)
- 4 Adaptateur HEX-E/H QC
- 5 Adaptateur/bride d'outil du robot (ISO 9409-1-50-4-M6)

Appliquez un couple de serrage de 1,5 Nm pour les vis M4x6mm

Appliquez un couple de serrage de 10 Nm pour les vis M6x8mm


Installation

6.2.3 Outils

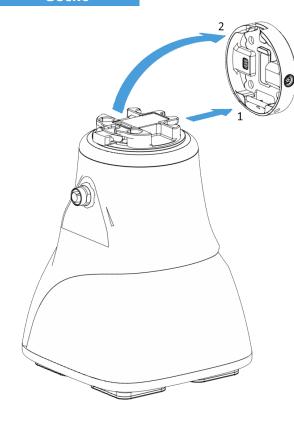
□ 3FG15	17
☐ Gecko	18
□ RG2	19
□ RG2-FT	20
□ RG6	21
□ SG	22
□ VG10	22
□ VGC10	23
Quick Changer - Côté out	:il 23

3FG15

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.


Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Gecko

Étape 1:

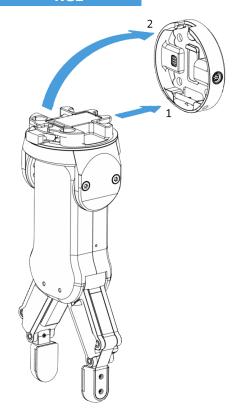
Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.



ATTENTION:

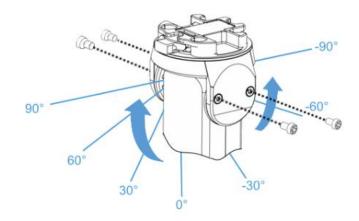
Avec un Dual Quick Changer, le Gecko Gripper peut seulement être monté sur le côté secondaire (2). Un montage sur le côté primaire (1) empêche le bon fonctionnement des dispositifs.

RG2

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

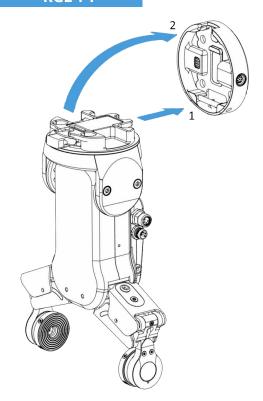

Étape 2 :

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Pour modifier l'angle relatif du préhenseur sur le Quick Changer :

- retirer d'abord les quatre vis M4x6
- incliner le préhenseur entre -90° et 90°
- reposer les quatre vis M4x6 en les serrant à 1,35 Nm pour les fixer.



AVERTISSEMENT:

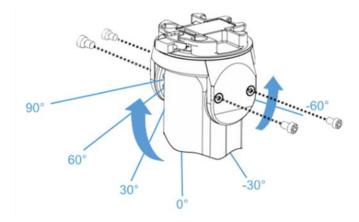
Ne jamais utiliser l'appareil lorsque l'une des quatre vis M4x6 est déposée.

RG2-FT

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

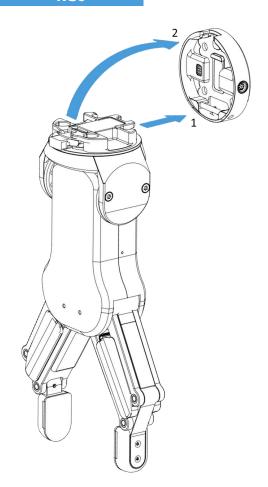

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Pour modifier l'angle relatif du préhenseur sur le Quick Changer :

- retirer d'abord les quatre vis M4x6
- incliner le préhenseur entre -60° et 90°
- reposer les quatre vis M4x6 en les serrant à 1,35 Nm pour les fixer.



AVERTISSEMENT:

Ne jamais utiliser l'appareil lorsque l'une des quatre vis M4x6 est déposée.

RG6

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

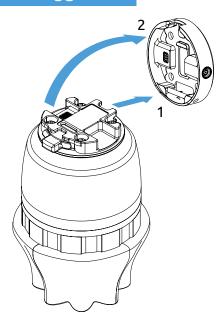

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Pour modifier l'angle relatif du préhenseur sur le Quick Changer :

- retirer d'abord les quatre vis M4x6
- incliner le préhenseur entre -90° et 90°
- reposer les quatre vis M4x6 en les serrant à 1,35 Nm pour les fixer.



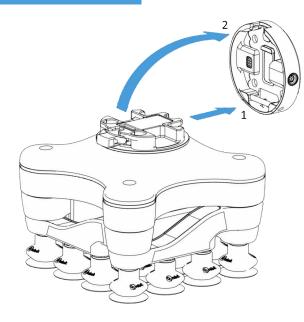
AVERTISSEMENT:

Ne jamais utiliser l'appareil lorsque l'une des quatre vis M4x6 est déposée.

SG

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.


Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

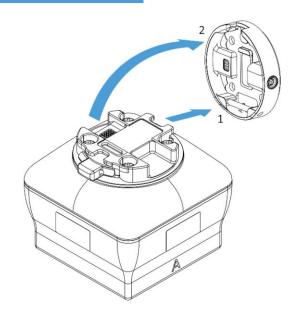
Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

VG10

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.


Étape 2:

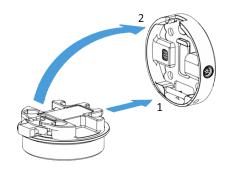
Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

VGC10

Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.


Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

Étape 2:

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.

Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

Quick Changer -Côté outil

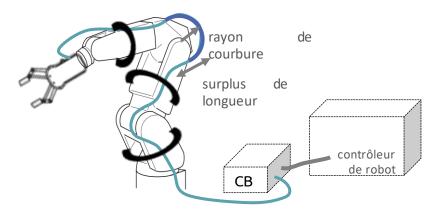
Étape 1:

Déplacez l'outil à proximité du changeur Quick Changer comme illustré.

Le mécanisme de crochet (tige et attache à crochet) garde la partie inférieure verrouillée une fois monté.

Étape 2 :

Basculez l'outil jusqu'à ce qu'il soit bien adapté, vous entendrez un déclic.


Pour démonter l'outil, appuyez sur le bouton en aluminium du Quick Changer et répétez ces étapes dans l'ordre inverse.

6.3 Câblage

Quatre types de câbles sont nécessaires pour câbler le système correctement :

- Câble de données d'outil entre le ou les outils et le Compute Box
- Les câbles d'E/S numériques fournis entre le Compute Box et le contrôleur du robot.
- Câble de communication Ethernet entre le Compute Box et votre ordinateur
- Alimentation électrique du Compute Box

6.3.1 Données d'outil

Branchez le câble de données à l'outil puis faites passer le câble (ligne bleue) jusqu'au Compute Box (CB) et utilisez la bande Velcro fournie (noire) pour le fixer.

NOTE:

Laissez une longueur de câble supplémentaire autour des articulations afin que le câble ne soit pas tiré lorsque le robot se déplace.

Veillez aussi à ce que le rayon de courbure de câble soit d'au moins 40 mm (70 mm pour le HEX-E/H QC)

Branchez ensuite l'autre extrémité au connecteur DEVICES du Compute Box.

ATTENTION:

Utilisez uniquement des câbles de données d'outil OnRobot d'origine.

6.3.2 Câbles d'E/S numérique

A l'intérieur de l'armoire électrique, l'interface CNIN I/O de la carte Mini I/O (carte d'E/S la plus courante) peut être utilisée pour connecter le Commute Box au contrôleur du robot.

Assurez-vous que le robot est complètement hors tension.

Localisez d'abord le connecteur CNIN dans le contrôleur de robot (nécessite une mini carte E/S).

Préparez ensuite le connecteur correspondant CNIN de rechange (composant Fujitsu FCN-36J024-AU) fourni avec la mini carte E/S.

Vérifiez votre module E/S numérique installé dans l'armoire de commande et configurez les commutateurs DIP Compute Box (rouges) en conséquence :

Pour **PNP**, tapez 1. et 2. Commutateurs DIP en position OFF (vers le bas).

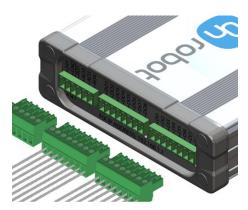
Pour **NPN** tapez 1. et 2. Commutateurs DIP en position ON (vers le haut).

Commutateur DIP 1 : Mode d'entrée numérique Commutateur DIP 2 : Mode de sortie numérique

NOTE:

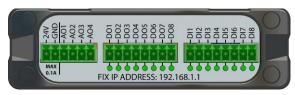
Ne modifiez pas les commutateurs DIP 3 et 4, sinon les paramètres réseau seront modifiés.

(Veuillez vous référer au manuel du robot pour vérifier s'il s'agit d'un type NPN ou PNP.)



NOTE:

Utilisez la configuration PNP si la carte Mini I/O est de type PNP Transistor ou la carte Mini I/O est de type Relais et configurée comme type PNP.


Utilisez la configuration NPN si la carte Mini I/O est de type NPB Transistor ou la carte Mini I/O est de type Relais et configurée comme type NPN.

Branchez les connecteurs enfichables verts fournis.

Les types de connecteurs fournis sont : 2 x bornier Phoenix Contact MC 1,5/8-ST-3,5 1 x bornier Phoenix Contact MC 1,5/6-ST-3,5

Câblez les câbles d'E/S numériques du Compute Box au robot.

DO1-8: Sorties numériques du Compute Box (signaux des préhenseurs/capteurs vers le robot)

DI1-8: Entrées numériques du Compute Box (signaux du robot vers les préhenseurs/capteurs)

GND: À utiliser pour avoir une masse commune entre le robot et le préhenseur/capteur

Il est recommandé de connecter les 8 entrées et les 8 sorties pour plus de simplicité.

ATTENTION:

Si certains des fils DO1-8 ou DI1-8 ne sont pas connectés, assurezvous de les dévisser du bornier pour éviter un court-circuit accidentel.

ATTENTION:

Les broches 24V et GND ne sont que des sorties de tension de référence. Elles ne peuvent être utilisées pour alimenter aucun équipement.

Il est recommandé d'utiliser uniquement les fils fournis. S'il est nécessaire d'utiliser un fil différent, utilisez un fil plus court que 3 m.

Connectez les entrées du Compute Box aux sorties du robot et les sorties du Compute Box aux entrées du robot.

Installation

Pour des raisons de simplicité, il est recommandé de mapper les broches dans l'ordre :

DO1 vers l'entrée numérique du

robot Digital 1

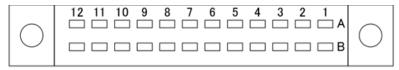
DO2 vers l'entrée numérique du

robot Digital 2

DO8 vers l'entrée numérique du robot Digital 8

DI1 vers la sortie numérique du

robot Digital 1


DI2 vers la sortie numérique du

robot Digital 2

DI8 vers la sortie numérique du

robot Digital 8

Liste des broches importantes du connecteur homologue CNIN :

(Vue depuis la surface soudée)

Type de connecteur : FCN-361J024-AU femelle, de soudage (composant Fujitsu)

Broche	Description	Broche	Description
B1	Entrée numérique 97	A1	Sortie numérique 97
B5	Entrée numérique 98	A5	Sortie numérique 98
B2	Entrée numérique 99	A2	Sortie numérique 99
B6	Entrée numérique 100	A6	Sortie numérique 100
B3	Entrée numérique 101	A3	Sortie numérique 101
B7	Entrée numérique 102	A7	Sortie numérique 102
B4	Entrée numérique 103	A4	Sortie numérique 103
B8	Entrée numérique 104	A8	Sortie numérique 104
A10	M1 - Alimentation interne 24V	B10	M1 - Alimentation interne 24V
A11	P1 - Alimentation interne 0V	B11	P1 - Alimentation interne 0V
В9	Entrée commune	A9	Sortie commune
B12	PR (Alimentation relais +)	A12	MR (Alimentation relais-)

Veuillez noter quelle broche vous avez utilisée lors du câblage, dans une étape ultérieure, elle sera nécessaire pour le mappage.

Pour avoir un signal de terre commun, les deux broches suivantes doivent être câblées ensemble:

Broches de	Broches vers	Description
Compute Box - Masse	A11 (ou B11)	Masse du Compute Box vers P1 (alimentation interne 0V)

Dans le cas d'une carte Mini I/O de type relais, les broches CNIN suivantes doivent être câblées ensemble pour alimenter les relais :

Broches de	Broches vers	Signal NACHI
B12	A10 (ou B10)	PR (alimentation + du relais) à P1 (alimentation interne 24 V)
A12	A11 (ou B11)	MR (alimentation - du relais) à M1 (alimentation interne 0 V)

De plus, afin de paramétrer la mini carte E/S de type Relais à la configuration NPN ou PNP, les broches CNIN suivantes doivent être câblées ensemble :

• Pour la configuration NPN

Broches de	Broches vers	Signal NACHI
A9	A11 (ou B11)	Sortie commune à M1 (alimentation interne 0 V)
В9	A10 (ou B10)	Entrée commune à P1 (alimentation interne 24 V)

• Pour la configuration PNP

Broches de	Broches vers	Signal NACHI
A9	A10 (ou B10)	Sortie commune à P1 (alimentation interne 24 V)
B9	A11 (ou B11)	Entrée commune à M1 (alimentation interne 0 V)

6.3.3 Câble Ethernet

Connectez le Compute Box fourni (connecteur ETHERNET) et votre ordinateur avec le câble UTP fourni..

Cette connexion n'est nécessaire que pour la programmation.

ATTENTION:

N'utilisez que des câbles Ethernet OnRobot originaux ou remplacez-les par un câble blindé ne dépassant pas 3 mètres de long.

AVERTISSEMENT:

Vérifier et s'assurer que le boîtier du Compute Box (métallique) et le boîtier du contrôleur du robot (métallique) ne sont pas connectés (pas de connexion galvanique entre les deux).

6.3.4 Alimentation électrique

Branchez l'alimentation fournie sur le connecteur 24V du Compute Box.

NOTE:

Pour débrancher le connecteur d'alimentation, veillez à tirer sur le boîtier du connecteur (où sont les flèches) et non sur le câble.

ATTENTION:

N'utilisez que des alimentations OnRobot d'origine.

Enfin, mettez sous tension l'alimentation électrique qui alimentera le Compute Box et le ou les outils connectés.

7 Fonctionnement

NOTE:

On suppose que l'installation s'est correctement terminée. Si ce n'est pas le cas, effectuez d'abord les étapes d'installation de la section précédente.

7.1 Vue d'ensemble

OnRobot WebLogicTM doit être d'abord reprogrammé à l'aide d'un ordinateur connecté au Compute Box. Il peut ensuite fonctionner de façon autonome sans connexion Ethernet.

Étapes de programmation:

- Configurez l'interface Ethernet du Compute Box et connectez-la au boîtier de calcul
- Ouvrez le Web Client sur votre ordinateur pour accéder au menu WebLogic™
- Inscrivez votre programme dans le menu WebLogic™

Les paragraphes suivants vous guiderons dans ces étapes.

7.2 Configuration de l'interface Ethernet

Une adresse IP appropriée doit être définie pour que le Compute Box et le robot/ordinateur puissent utiliser l'interface Ethernet. Il y a trois façons de le configurer (à l'aide des commutateurs DIP 3 et 4):

• **Auto mode** (valeur par défaut d'usine)

C'est le moyen le plus simple d'obtenir les adresses IP à configurer à la fois pour le Compute Box et pour le robot/ordinateur. Il est recommandé de commencer avec ce mode, c'est donc le réglage par défaut en usine.

• Fixed IP mode (192.168.1.1)

Si le **Auto mode** ne fonctionne pas, utilisez ce mode pour obtenir l'adresse IP fixe du Compute Box. Cela nécessite une configuration manuelle de l'adresse IP du robot/ordinateur. (Ce mode peut également être utilisé pour réinitialiser l'adresse IP à une valeur connue si le Compute Box devient injoignable en **Advanced mode**.)

• Advanced mode (toute adresse IP statique/de masque de sous-réseau)

Si l'adresse IP fixe (192.168.1.1) est déjà utilisée dans votre réseau ou si un sous-réseau différent doit être configuré, dans ce mode, l'adresse IP et le masque de sous-réseau peuvent être modifiés à une valeur quelconque. Cela nécessite également une configuration manuelle de l'adresse IP du robot/ordinateur.

NOTE:

Pour passer d'un mode à l'autre, changez d'abord les commutateurs DIP, puis l'alimentation du Compute Box doit être désactivée puis réactivée pour que les changements prennent effet.

Auto mode

Utilisez les réglages d'usine par défaut (commutateurs DIP 3 et 4 en position OFF).

Dans ce cas, le client Dynamic Host Configuration Protocol (DHCP) et le serveur DHCP sont activés pour le Compute Box.

DHCP Client enabled signifie, Compute Box obtiendra automatiquement ("get") l'adresse IP du robot/ordinateur connecté si celui-ci est capable d'attribuer ("give") l'adresse IP au Compute Box.

DHCP Client enabled signifie que Compute Boxattribuera automatiquement ("give") l'adresse IP au robot/ordinateur connecté si celui-ci a été configuré pour obtenir ("get") l'adresse IP automatiquement.

NOTE:

La plage IP attribuée est 192.168.1.100-105 (avec masque de sousréseau 255.255.255.0).

Si le Compute Box est utilisé dans un réseau d'entreprise utilisant déjà un serveur DHCP, il est recommandé pour désactiver le serveur DHCP du Compute Box en mettant le DIP switch 4 en position ON.

Si aucune adresse IP n'a été attribuée au Compute Box dans la minute qui suit, elle reçoit automatiquement une adresse IP de secours (192.168.1.1).

NOTE:

Si le Compute Box était en **Advanced mode**, commencez par réinitialiser le réglage de l'adresse IP en passant en **Fixed IP mode**, puis revenez au **Auto mode**.

Fixed IP mode

Mettez les interrupteurs DIP 3 et 4 en position ON et coupez puis réactivez l'alimentation pour que les changements prennent effet.

Dans ce cas, l'adresse IP du Compute Box est réglée sur 192.168.1.1 (masque de sousréseau 255.255.255). Les options DHCP Client et Serveur sont désactivées..

Assurez-vous de définir manuellement l'adresse IP du robot/ordinateur. Pour bénéficier d'une communication correcte, l'adresse IP du robot/ordinateur doit être comprise entre 192.168.1.2 et 192.168.1.254.

Exemple de réglage robot/ordinateur:

Adresse IP: 192.168.1.2

Masque de sous-réseau: 255.255.255.0

D'autres paramètres comme Passerelle, Serveur DNS, etc. peuvent être laissés vides ou mis à 0.0.0.0.

Advanced mode

Mettez l'interrupteur DIP 3 en position OFF et l'interrupteur DIP 4 en position ON et coupez puis réactivez l'alimentation pour que les changements prennent effet.

Dans ce cas, l'adresse IP du Compute Box peut être définie à n'importe quelle valeur en utilisant le client Web. Pour plus de détails, voir la section Configuration menu.

Dans ce mode, l'option serveur DHCP est désactivée.

Assurez-vous d'avoir un paramètre IP correspondant à votre réseau robot/ordinateur pour une communication de qualité.

NOTE:

Si le Compute Box devient inaccessible (en raison de paramètres IP incorrects ou oubliés), passez en **Fixed IP mode** pour réinitialiser le réglage de l'adresse IP.

7.3 Web Client

Pour accéder au Web Client sur votre ordinateur, l'interface Ethernet doit être configurée pour avoir une bonne communication entre votre ordinateur et le Compute Box. Il est conseillé d'utiliser le mode Auto (pour d'autres détails, voir le paragraphe **Configuration de l'interface Ethernet**).

Effectuez ensuite les étapes suivantes :

- Connectez le Compute Box à votre ordinateur avec le câble UTP.
- Allumez le Compute Box avec l'alimentation fournie
- Attendez une minute que la LED du Compute Box passe du bleu au vert.
- Ouvrez un navigateur web sur votre ordinateur et saisissez l'adresse IP du Compute Box (l'adresse par défaut est 192.168.1.1).

La page de connexion s'ouvre :

La connexion administrateur par défaut est :

Nom d'utilisateur : admin Mot de passe : OnRobot

Un mot de passe doit être saisi pour la première connexion : (le mot de passe doit comporter au moins 8 caractères)

Une fois connecté, vous pouvez accéder aux menus du haut. Sélectionnez le menu **WebLogic™**.

7.4 Menu OnRobot WebLogic™

Il existe deux onglets au choix:

- Navigateur gérer (importer/exporter, etc.) les programmes WebLogic™
- Éditeur de programme créer/modifier ou exécuter des programmes WebLogic™

Ces deux choix sont décrits ci-dessous.

7.4.1 Navigateur

Cet onglet répertorie les programmes WebLogic™ qui sont enregistrés sur le Compute Box.

- Pour créer un nouveau programme, allez à l'onglet Éditeur de programme.
- Pour éditer un programme mémorisé, cliquez sur l'icône de crayon 🖍 et celui-ci sera chargé dans l'**Éditeur de programme**
- Tous les programmes peuvent être supprimés en cliquant sur l'icône de poubell∈
 .
- Les programmes peuvent être exportés vers votre ordinateur en cliquant sur l'icône de flèche vers le bas \pm .
- Les programmes exportés peuvent être importés avec le bouton **importer**.

NOTE:

Le nom du programme modifié dans le **Éditeur de programme** est en gras.

eur). (Pour l'exécution automatique de votre progr igateur Éditeur de programme			exécuter dans l'onglet Editor le Compute Box.)
, , , , , , , , , , , , , , , , , , ,			
IMPORTER Vous pouvez importer un fichi	ier programme à partir de votre ordinateur.		
OM DU PROGRAMME	LIGNES	TAILLE	
	LIGNES 2	TAILLE 2,742	/ ± 1
OM DU PROGRAMME rogram 1			

7.4.2 Éditeur de programme

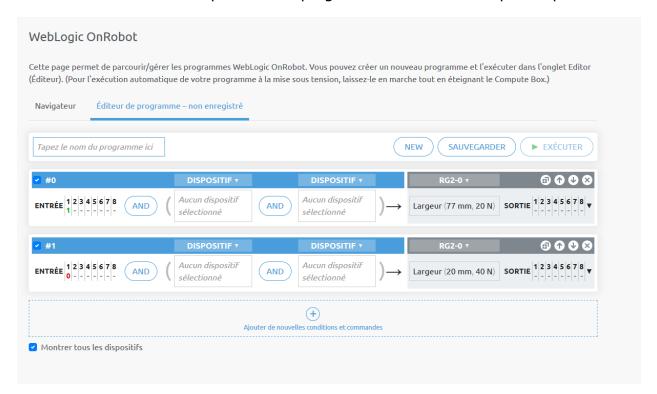
Cet onglet affiche le programme WebLogic™ actuellement modifié.

Le programme WebLogic™ contient 1 « rangée » ou plus.

Une ligne contient des conditions (partie bleue) et des commandes (partie grise) comme suit :

(Si) DI1=1 \rightarrow (Alors) RG2-Largeur=77 (force=20N)

(Si le robot règle l'entrée numérique 1 (DI1) du Compute Box trop élevée, **alors** ouvrez le préhenseur RG2 à 77 mm.)


Une autre rangée dans un programme peut être la suivante :

(Si) DI1=0 \rightarrow (Alors) RG2-Largeur=20 (force=40N)

(Si le robot règle l'entrée numérique 1 (DI1) du Compute Box trop basse, **alors** refermez le préhenseur RG2 à 20 mm.)

Avec les deux rangées ci-dessus dans un programme, un préhenseur RG2/6 peut être actionné (ouvert et fermé) avec une simple sortie numérique d'un robot, alors que la largeur et la force d'ouverture et de fermeture peuvent être programmées sur une valeur quelconque.

Pour exécuter un programme WebLogic™, veillez à Pour exécuter un programme WebLogic™, assurez-vous d'abord entrer un nom de programme et cliquez sur le bouton **Sauvegarder** pour l'enregistrer, puis cliquez sur le bouton **► Exécuter**.

NOTE:

Pour qu'un programme s'exécute automatiquement lorsque le Compute Box est sous tension, laissez simplement le programme s'exécuter tout en mettant le Compute Box hors tension.

Pour démarrer un nouveau programme, cliquez sur le bouton **Nouveau**.

- Pour ajouter une nouvelle ligne, cliquez sur le bouton () Ajouter de nouvelles conditions et commandes.
- Pour supprimer une rangée, cliquez sur l'icône .
- Pour déplacer la rangée vers le haut ou vers le bas, cliquez sur les icônes 🕕 🗓 .

NOTE:

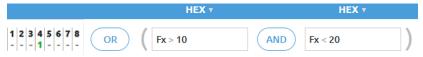
Les conditions et les commandes sont exécutées de haut en bas. Les mêmes commandes en bas peuvent écraser celles du haut.

- Pour recopier une rangée, cliquez sur l'icône
- Pour désactiver une rangée (à ne pas exécuter) décochez la case à côté du numéro de rangée.

Les rangées doivent avoir au moins une condition et au moins une commande à exécuter.

Conditions

Les conditions sont les champs d'entrée marqués en bleu.


Il existe deux types de conditions :

• Type Entrée numérique - comme DI4=1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

• Type de valeur spécifique de l'appareil - comme HEX Fx > 10N

Ces types de conditions peuvent être combinés avec la logique ET ou OU pour former une condition plus complexe :

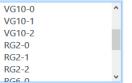
Si (DI4=1) OU (HEX Fx > 10 N ET HEX Fx < 20N)

La condition est vraie si Fx est entre 10N et 20N ou si le robot a signalé une Entrée numérique 4 élevée.

Les entrées numériques (DI1-DI8) peuvent avoir les trois états suivants : (cliquez pour passer d'un état à l'autre)

- Ignorer (ce bit est masqué et donne un résultat vrai pour le bit)
- • onner une logique vraie si le bit d'entrée est bas

HEX ▼


1 -donner une logique vraie si le bit d'entrée est élevé

NOTE:

Si aucun type d'entrée numérique de condition n'est nécessaire, réglez DI1-DI8 sur lignorer.

Pour des valeurs spécifiques de l'appareil, réglez d'abord le **Sélectionner le dispositif** en cliquant sur l'icône de flèche.

NOTE:

La liste contient uniquement les appareils connectés. Si vous souhaitez sélectionner un appareil qui n'est pas connecté, cochez la case **Montrer tous les dispositifs**.

Pour le 3FG15, le RG2/6, le SG, le VG10, le VGC10 et le Gecko, le nom de l'appareil est suivi de trois chiffres :

- 0 Si l'appareil est monté sur un changement rapide ou un HEX-E/H QC
- 1 Si l'appareil est monté sur le côté principal d'un double changement rapide
- 2 Si l'appareil est monté sur le côté secondaire d'un double changement rapide

NOTE:

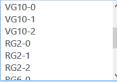
Si la condition de type valeur spécifique d'un appareil n'est pas nécessaire, réglez-la sur -- Non sélectionné -- et elle donnera un résultat vrai.

Commandes

Les conditions sont les champs d'entrée marqués en gris.

Il existe deux types de commandes:

 Type de valeur spécifique d'un appareil - comme à 77 mm avec la force = 20N) (réglez la largeur du RG2


Type de sortie numérique - comme DO4=1
 1 2 3 4 5 6 7 8 (réglez la sortie numérique 4 sur logique élevée)

NOTE:

Les deux types sont toujours exécutés pour vérifier que la partie non pertinente est toujours réglée sur Ne pas changer ou – Non sélectionné --.

Pour une valeur spécifique de l'appareil, réglez d'abord le **Sélectionner le dispositif** en cliquant sur l'icône de flèche.

NOTE:

La liste contient uniquement les appareils connectés. Si vous souhaitez sélectionner un appareil qui n'est pas connecté, cochez la case **Montrer tous les dispositifs**.

Pour le 3FG15, le RG2/6, le SG, le VG10, le VGC10 et le Gecko, le nom de l'appareil est suivi de trois chiffres :

- 0 Si l'appareil est monté sur un changement rapide ou un HEX-E/H QC
- 1 Si l'appareil est monté sur le côté principal d'un double changement rapide
- 2 Si l'appareil est monté sur le côté secondaire d'un double changement rapide

Les sorties numériques (DO1-DO8) peuvent avoir les trois états suivants : (cliquez pour passer d'un état à l'autre)

- - Ne pas changer
- • réglez le bit de sortie sur logique faible
- 1 réglez le bit de sortie sur logique élevée

Liste des valeurs spécifiques de l'appareil

□ 3FG15	91
☐ Gecko	92
□ HEX-E/H QC	92
□ RG2/6	93
□ RG2-FT	93
□ SG	94
□ VG10 / VGC10	94

NOTE:

Chaque appareil possède une condition **OnStart** qui devient vraie uniquement lorsque l'appareil est connecté ou si le programme est démarré, puis devient immédiatement fausse. Ceci peut être utile pour détecter si un appareil est connecté ou réglé sur une valeur initiale quelconque au démarrage du programme.

3FG15

Conditions	Description
Diamètre	Diamètre brut actuel des doigts [mm]
Diamètre avec bouts de doigts	Diamètre actuel des doigts avec les bouts de doigts [mm]
Force	Force actuelle en pourcentage
Occupé	Passe à VRAI quand le préhenseur se déplace, sinon FAUX .
Préhension détectée	Devient VRAI quand le préhenseur a été commandé pour un déplacement et le déplacement a été arrêté en saisissant une pièce, sinon FAUX .
Force de préhension détectée	Devient VRAI quand le préhenseur a été commandé pour une préhension et la force cible est atteinte, sinon FAUX .
Erreur	Devient VRAI quand il y a une erreur, sinon FAUX .

Commandes	Description
Préhension interne	Pour une préhension interne d'une pièce avec la force cible donnée (1-100 %). Le diamètre cible doit être supérieur de 3 mm au diamètre de la pièce à saisir.
Préhension externe	Pour une préhension externe d'une pièce avec la force cible donnée (1-100 %). Le diamètre cible doit être inférieur de 3 mm au diamètre de la pièce à saisir.
Déplacer au diamètre	Déplace les doigts au diamètre donné [mm]
Arrêter	Arrête le déplacement des doigts

Gecko

Conditions	Description
Précharge	Force réelle exercée sur les coussinets [N] (en dessous de 50N, la valeur est 0N)
Ultrasonique	Distance réelle mesurée entre le bas du préhenseur et l'objet.[mm]
Position du coussinet	Position réelle des coussinets Entrée ou Sortie
Coussinets usés	Si une saisie a été détectée et que la distance de l'objet dépasse 18 mm (sans que les coussinets soient enfoncés), l'objet est perdu et les coussinets sont Mauvais , ou sinon le résultat est Bon .
Occupé	Les coussinets sont en mouvement
Saisir	Lorsque les coussinets sont sortis si la force Précharge est atteinte et que la distance de l'objet est inférieure à 18 mm, la saisie devient VRAI ou sinon FAUX . (se réinitialise sur FAUX en enfonçant les coussinets)

Commandes	Description
Position du coussinet	Pour tirer les coussinets Entrée ou appuyer sur les coussinets Sortie
Seuil de précharge	Pour régler la limite de force de précharge utilisée pour détecter un succès de Saisir . Les options disponibles sont : 50N, 90N, 120N
Réinitialiser les journaux d'erreur	Efface les erreurs (ex. : Coussinets usés)

HEX-E/H QC

Conditions	Description
Polarisation	VRAI si le capteur a été remis à zéro (biaisé).
 	F3D= $\sqrt{Fx^2 + Fy^2 + Fz^2}$ [N] T3D= $\sqrt{Tx^2 + Ty^2 + Tz^2}$ [Nm]
Fx, Fy, Fz, Tx, Ty, Tz	Valeurs réelles de force [N] et de couple [Nm]

Commandes	Description
Polarisation	Réglez sur VRAI pour mettre à zéro les signaux du capteur F/T (non permanents, se rétablit à la remise sous tension)

RG2/6

Conditions	Description
Largeur	Largeur réelle du préhenseur [mm]
Occupé	Vrai si le préhenseur est en mouvement (n'accepte de nouvelles commandes que lorsqu'il n'est pas occupé)
Saisir	Une saisie interne ou externe est détectée.
Enfoncé par sécurité	Vrai si l'un des interrupteurs de sécurité du préhenseur est enfoncé.
Déclenché par sécurité	Vrai si l'un des interrupteurs de sécurité du préhenseur est déclenché.

Commandes	Description
Largeur	Réglez le préhenseur sur une nouvelle largeur [mm] avec une force de préhension [N]
Décalage du bout de doigt	Réglez le décalage des bouts de doigt sur le côté intérieur du métal [mm]. Un nombre positif signifie vers l'intérieur.
	Si l'interrupteur de sécurité a arrêté le préhenseur, utilisez cette option pour revenir au fonctionnement normal.
Cycle d'alimentation	Réinitialise l'alimentation des outils pendant une seconde. Si un autre préhenseur est connecté, il sera également mis hors tension et sous tension pendant une seconde. (Assurez-vous qu'aucune pièce ne tombe pendant la mise hors tension.)

RG2-FT

Conditions	Description
Proximité (G,D)	Valeurs réelles des capteurs de proximité des bouts de doigt gauche et droit [mm]
Largeur	Largeur réelle du préhenseur [mm]
Occupé	Vrai si le préhenseur est en mouvement (n'accepte de nouvelles commandes que lorsqu'il n'est pas occupé)
Saisir	Une saisie interne ou externe est détectée.
FT Polarisation	VRAI si le capteur a été remis à zéro (biaisé).
Gauche et Droit F3D,T3D	F3D= $\sqrt{Fx^2 + Fy^2 + Fz^2}$ [N] où Fx, Fy, Fz sont les composantes de la force du capteur de bout de doigt T3D= $\sqrt{Tx^2 + Ty^2 + Tz^2}$ [Nm] où Tx, Ty, Tz sont les composantes du couple du capteur de bout de doigt
F3D et T3D	Le F3D et le T3D combinés agissant sur un objet que le préhenseur a saisi

Commandes	Description
Largeur	Réglez le préhenseur sur une nouvelle largeur [mm] avec une force de préhension [N]
Polarisation	Réglez sur VRAI à zéro les signaux du capteur F/T (non permanent, s'inverse à la réinitialisation de l'alimentation)

SG

Conditions	Description
Largeur	Largeur de préhenseur réelle [mm]
	Passe à VRAI quand le préhenseur a reçu une commande Initialiser valide, sinon FAUX .
Occupé	Passe à VRAI quand le préhenseur se déplace, sinon FAUX .

Commandes	Description
Initialiser	Initialisez d'abord le préhenseur en définissant le type de SG Tool utilisé.
Saisir	Déterminez une largeur cible assez petite pour saisir une pièce. Si l'option Préhension douce est VRAI , la vitesse de préhension diminuera de 10 mm avant la largeur cible.
Relâcher	Déterminez une largeur cible assez grande pour relâcher une pièce.

VG10/VGC10

Conditions	Description
Dépression réelle A	Niveau de dépression réel [0-80%] pour le canal A et le canal B
Dépression réelle B	

Commandes	Description
Limite de courant	Règle la limite de courant (0-1000 mA), la valeur par défaut est 500 mA
Saisir	Règle le niveau de dépression (0-80 %) pour le canal A (param1) et le canal B (param2)
Inactif	Coupez le moteur mais maintenez la vanne fermée pour le canal A, B ou A+B
Relâcher	Ouvre la vanne pour relâcher rapidement la dépression pour le canal A, B ou A+B

Fonctionnement

8 Options logicielles supplémentaires

8.1 Compute Box

8.1.1 Interfaces

Il est possible d'utiliser deux types d'interface:

Interface Ethernet

Cette interface permet d'accéder au Web Client qui peut être utilisé pour surveiller, contrôler et mettre à jour les préhenseurs/appareils. En outre, grâce à cette interface, il est possible d'accéder à OnRobot WebLogic™ pour programmer l'interface E/S numérique.

• Interface E/S numérique

Cette interface peut être utilisée pour communiquer via de simples lignes E/S numériques avec les robots. Il existe 8 entrées numériques et 8 sorties numériques qui peuvent être utilisées. Ces entrées et ces sorties peuvent être programmées par OnRobot WebLogic qui nécessite d'utiliser l'interface Ethernet (uniquement pour la durée de la programmation).

8.1.2 Web Client

Pour accéder au Web Client sur votre ordinateur, l'interface Ethernet doit être configurée pour avoir une bonne communication entre votre ordinateur et le Compute Box. Il est recommandé d'utiliser le mode Auto (pour d'autres détails, voir le paragraphe **Configuration de l'interface Ethernet**).

Effectuez ensuite les étapes suivantes :

- Connectez le Compute Box à votre ordinateur avec le câble UTP.
- Allumez le Compute Box avec l'alimentation fournie
- Attendez une minute que la LED du Compute Box passe du bleu au vert.
- Ouvrez un navigateur web sur votre ordinateur et saisissez l'adresse IP du Compute Box (l'adresse par défaut est 192.168.1.1).

La page de connexion s'ouvre :

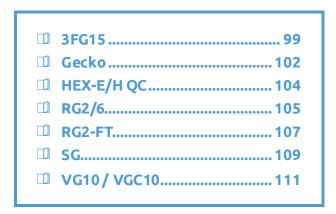
La connexion administrateur par défaut est :

Nom d'utilisateur : admin Mot de passe : OnRobot

Un mot de passe doit être saisi pour la première connexion : (le mot de passe doit comporter au moins 8 caractères)

Une fois la connexion établie, les menus suivants s'affichent en haut :

- **Dispositifs** Surveiller et contrôler les appareils connectés (par ex. : des préhenseurs)
- Configuration Changer les paramètres de la Compute Box
- WebLogic™ Programmer l'interface E/S numérique par OnRobot WebLogic™


- Trajectoires Importer/exporter les chemins enregistrés (non disponible sur tous les robots)
- Mettre à jour Mettre à jour la Compute Box et les appareils
- Paramètres du compte (par ex. : changer le mot de passe, ajouter un nouvel utilisateur)
- Sélectionner la langue du Web Client

Ces menus sont décrits ci-dessous.

Dispositifs menu

Pour contrôler/surveiller un appareil, cliquez sur le bouton **Sélectionner**.

3FG15 3FG15 Cette page permet de surveiller et de contrôler le dispositif. En naviguant jusqu'à l'onglet d'information sur le dispositif, l'état du dispositif est indiqué. (Certaines fonctions peuvent ne pas être accessibles sans l'autorisation de l'administrateur.) Surveillance et contrôle Paramètres Information sur le dispositif États Occupé Préhension détectée Force de préhension détectée Déplacer DIAMÈTRE BRUT CIBLE 86 mm Diamètre brut actuel: 85.7 mm Saisir Préhension externe Préhension interne Cible calculée actuelle: 69.2 mm **CALCULER LA CIBLE DIAMÈTRE CIBLE:** 69.2 mm FORCE CIBLE: 50 % **SAISIR** ARRÊTER

L'état du préhenseur peut être le suivant :

- Occupé le préhenseur est en mouvement
- Préhension détectée le préhenseur a détecté une pièce de travail
- Force de préhension détectée le préhenseur a appliqué la force cible à une pièce de travail. Cela active aussi un frein. Plus d'info dans la section Mouvement des doigts et force à la page 126.

Le préhenseur peut être commandé dans deux modes :

- **Déplacer** la manière la plus simple de déplacer le préhenseur mais force de préhension est limitée (<50N). Ce mode doit être utilisé pour relâcher une pièce et ouvrir le préhenseur.
- Mode **Saisir** ce mode doit être utilisé pour saisir correctement une pièce avec une force cible donnée. Si la pièce est correctement saisie (la force cible est atteinte), le frein s'engage pour assurer que la pièce ne tombera pas en cas de perte de puissance.

En mode **Déplacer**:

Le préhenseur peut être contrôlé en réglant le curseur **Diamètre brut cible**. Les valeurs réelles des doigts s'affichent sous **Diamètre brut actuel**. Le diamètre brut est sans le décalage de bout de doigt.

En mode Saisir:

Définissez d'abord comment saisir la pièce :

- En externe ou
- En interne

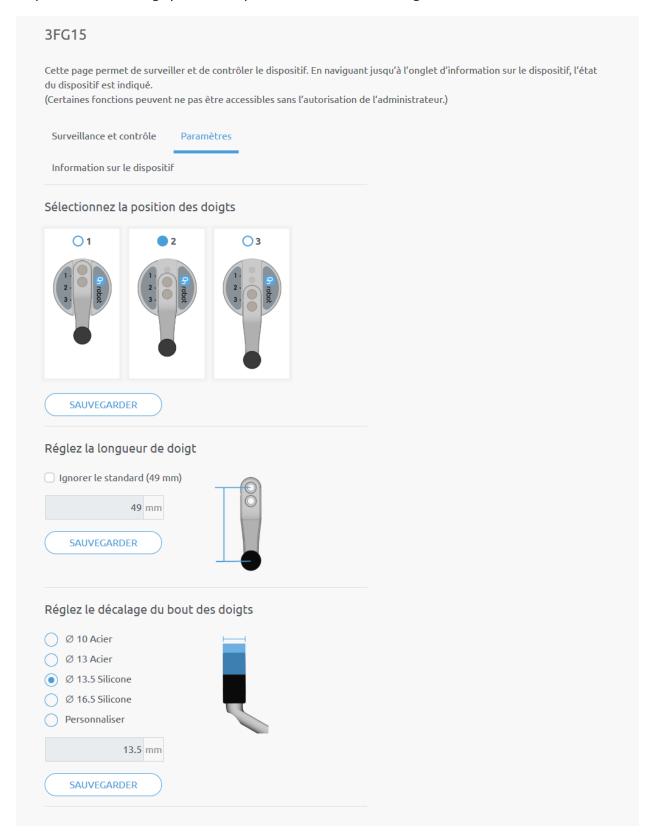
Pour saisir une pièce, définissez le **Diamètre cible** et la **Force cible** et cliquez sur le bouton **Saisir**.

Le diamètre cible peut être indiqué de deux manières :

- Saisie manuelle veillez à ajouter 3 mm au diamètre de la pièce si elle est saisie en interne et soustrayez 3 mm si elle est saisie en externe
- Utilisez le bouton Calculer la cible :

Déplacez les doigts avec le curseur de manière à toucher la pièce et activez **Préhension détectée** (ouverture complète pour une préhension interne ou fermeture complète pour une préhension externe).

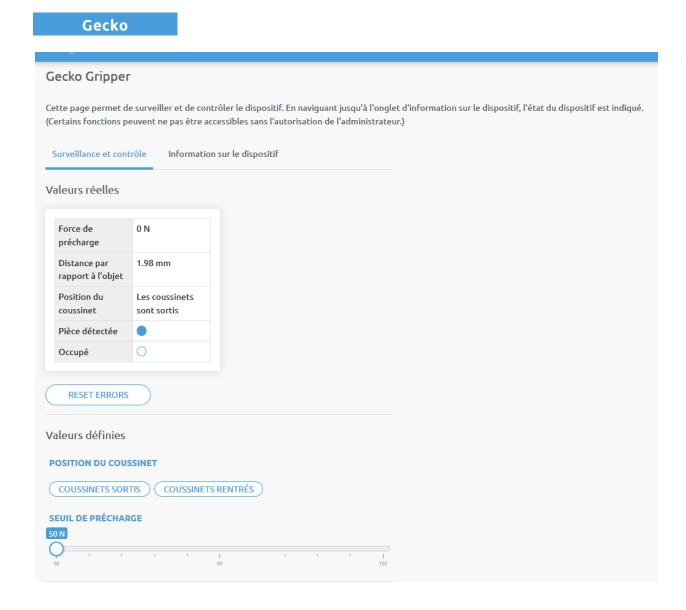
Selon que la préhension est externe ou interne, la **Cible calculée actuelle** (diamètre) s'affiche pour la préhension. Le décalage de bout de doigt est ajouté ou soustrait pour compenser le bout de doigt défini.


Type de préhension	Valeur cible calculée actuelle
Préhension externe	Diamètre brut actuel - Décalage du bout de doigt - 3 mm
Préhension interne	Diamètre brut actuel + Décalage du bout de doigt + 3 mm

Cliquez sur le bouton Calculer la cible pour charger la valeur calculée au Diamètre cible.

- Si la préhension a réussi, le signal Force de préhension détectée doit s'activer et le frein engagé doit émettre un déclic.
- Durant la préhension, le mouvement du doigt peut être interrompu en cliquant sur le bouton Arrêter.
- Pour relâcher la pièce à partir d'un état de préhension, déplacez le préhenseur :
- Vers l'extérieur dans le cas d'une préhension externe
- Vers l'intérieur dans le cas d'une préhension interne

Le paramètre de doigt par défaut peut être modifié sur l'onglet Paramètres :



 Sélectionnez la position des doigts - Sélectionnez la position des doigts montés et Sauvegarder.

- Réglez la longueur de doigt Si vous avez besoin de doigts personnalisés, vous pouvez cocher cette case et saisir la longueur des nouveaux doigts.
- **Réglez le décalage du bout des doigts** Vous pouvez définir les 4 différents types fournis avec le préhenseur en appuyant sur le bouton radio. Si vous optez pour des doigts personnalisés, vous pouvez sélectionner l'option Custom.

L'enregistrement de ces 3 paramètres applique automatiquement les modifications. Différentes positions de doigts, différents diamètres de bouts de doigts et différentes longueurs de doigts permettent d'obtenir des diamètres et des forces différents. Vous trouverez plus d'informations dans les sections Force de préhensions et Diamètre de préhensions

Un capteur à ultrasons de force et de distance se trouve dans le préhenseur. Les valeurs réelles de ces capteurs sont :

- Précharge les forces actuelles exercées sur les coussinets (en dessous de 50N, il affiche 0N)
- Distance par rapport à l'objet la distance entre l'objet et le bas du préhenseur

L'état du préhenseur peut être le suivant :

- Position du coussinet- Les coussinets sont Entrée ou Sortie (sortie signifie prêt pour la préhension)
- **Pièce détectée** la limite de la force de précharge définie est atteinte et la distance de l'objet est < 18 mm
- Occupé les coussinets se déplacent

Il est possible de contrôler les coussinets en cliquant sur les boutons **Sortie** et **Entrée**.

La valeur **Seuil de précharge** peut être modifiée si une force de précharge plus importante est exercée pour une bonne préhension.

Cette valeur ne sert qu'à générer un signal **Pièce détectée** correct.

NOTE:

Seuil de précharge la valeur réglée sur cette page n'est pas enregistrée en permanence et elle est rétablie à la valeur par défaut (90N) en réinitialisant l'alimentation.

Si une pièce est détectée et que l'objet se trouve à > 18 mm (la pièce est perdue) AVANT que les coussinets ne soient réglés sur IN (relâchement normal) l'avertissement **Coussinets usés** s'affiche dans l'onglet **Information sur le dispositif**.

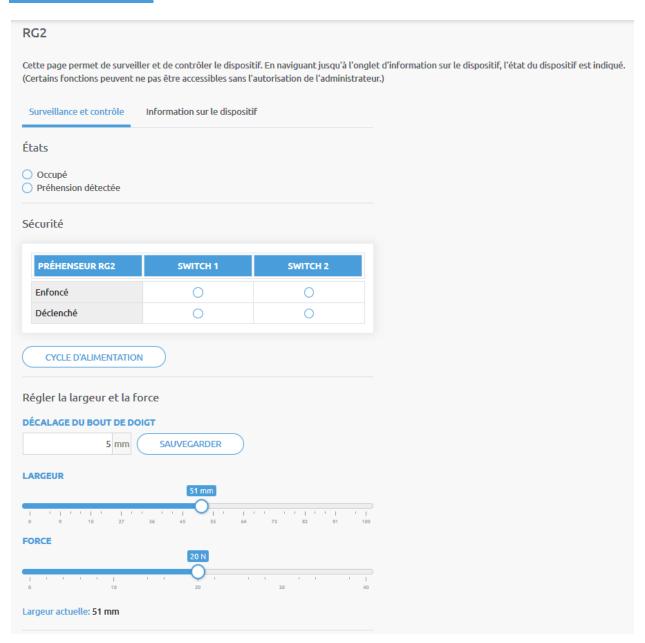
Pour réinitialiser l'avertissement :

- cliquez sur le bouton **Réinitialiser les erreurs**
- ou cliquez sur le bouton **Sortie**.

HEX-E/H QC

Les valeurs de force et de couple (Fx,Fy,Fz et Tx,Ty,Tz) sont indiquées en N/Nm.

Le commutateur à bascule **Zéro** peut être utilisé pour remettre à zéro les valeurs de force et de couple.



NOTE:

la valeur **Zéro** définie sur cette page n'est pas enregistrée de façon permanente et elle se rétablit aux valeurs par défaut en réinitialisant l'alimentation.

RG2/6

L'état du préhenseur peut être le suivant :

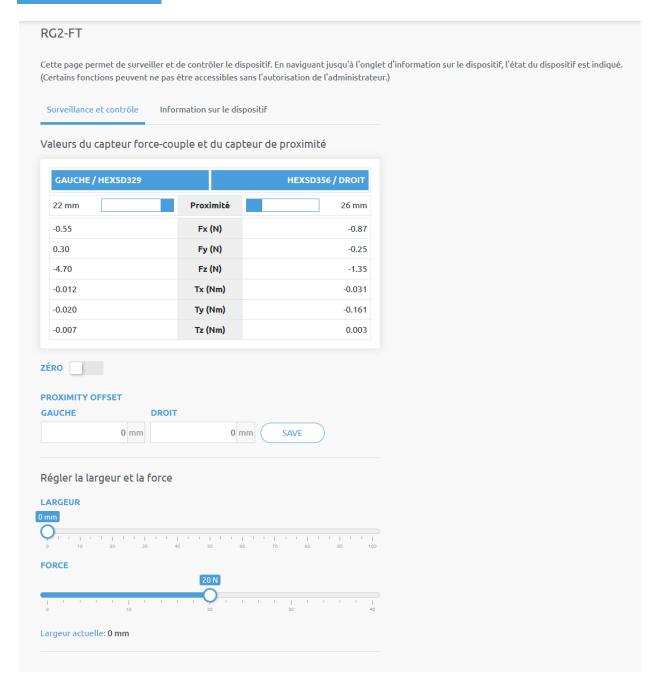
- Occupé le préhenseur se déplace
- **Préhension détectée** la limite définie pour la force est atteinte mais la largeur réglée ne l'est pas.

L'état des deux interrupteurs de sécurité indique :

- Enfoncé l'interrupteur de sécurité 1/2 est encore enfoncé
- **Déclenché** l'interrupteur de sécurité 1/2 a été activé et le préhenseur est arrêté.

Pour restaurer à partir d'un état déclenché :

- Vérifiez si l'un des interrupteurs de sécurité n'est pas enfoncé
- Si c'est le cas, retirez l'objet en appuyant sur l'interrupteur


• Cliquez sur **Cycle d'alimentation** pour mettre hors tension tous les appareils, puis sous tension pour restaurer.

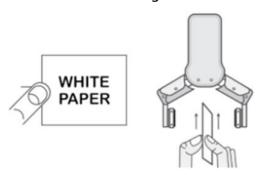
Le **Décalage du bout de doigt** doit être défini en fonction des bouts de doigts fixés au préhenseur. Le décalage est mesuré à partir de la face de contact interne des bouts de doigts métalliques. Pour enregistrer la valeur sur le préhenseur de manière permanente, cliquez sur **Sauvegarder**.

Le préhenseur peut être contrôlé en réglant la valeur **Force** et **Largeur**. D'abord, définissez la force de préhension requise puis ajustez le curseur de largeur permettant de contrôler immédiatement le préhenseur.

RG2-FT

Les valeurs de force et de couple (**Fx,Fy,Fz** et **Tx,Ty,Tz**) sont affichées en N/Nm avec les valeurs du capteur de Proximité (capteur de distance optique intégré au bout de doigt) affichées en mm pour le capteur de bout de doigt gauche et droit.

Le commutateur à bascule **Zéro** peut être utilisé pour remettre à zéro les valeurs de force et de couple.

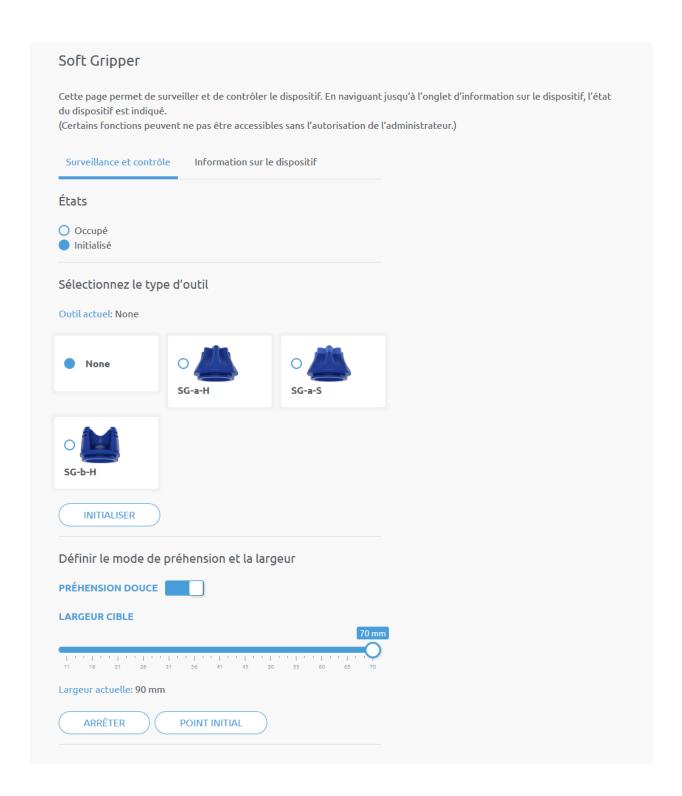

NOTE:

la valeur **Zéro** définie sur cette page n'est pas enregistrée de façon permanente et elle se rétablit aux valeurs par défaut en réinitialisant l'alimentation.

Le **Décalage de proximité** peut être utilisé pour étalonner le relevé de proximité. L'étalonnage nécessite les étapes suivantes :

- Écrivez 0 mm pour la zone d'édition **Gauche** et **Droit** et cliquez sur le bouton **Sauvegarder**.
- Fermez complètement le préhenseur (réglez la **Largeur** sur 0) en tenant un papier blanc entre les bouts de doigts.

- Lisez les valeurs actuelles **Gauche** et **Droit Proximité** (ex. : 19 mm et 25 mm)
- Écrivez ces valeurs pour les zones d'édition **Gauche** et **Droit** et cliquez sur le bouton **Sauvegarder** pour les enregistrer définitivement.
- Ouvrez le préhenseur et l'étalonnage est terminé.


NOTE:

Des valeurs de décalages trop élevées peuvent écrêter le relevé de proximité à 0 mm (une distance négative n'est pas affichée). En cas d'écrêtement (relevé 0 mm), essayez de diminuer les valeurs de décalage.

Le préhenseur peut être contrôlé en réglant la valeur **Force** et **Largeur**. D'abord, définissez la force de préhension requise puis ajustez le curseur de largeur permettant de contrôler immédiatement le préhenseur.

SG

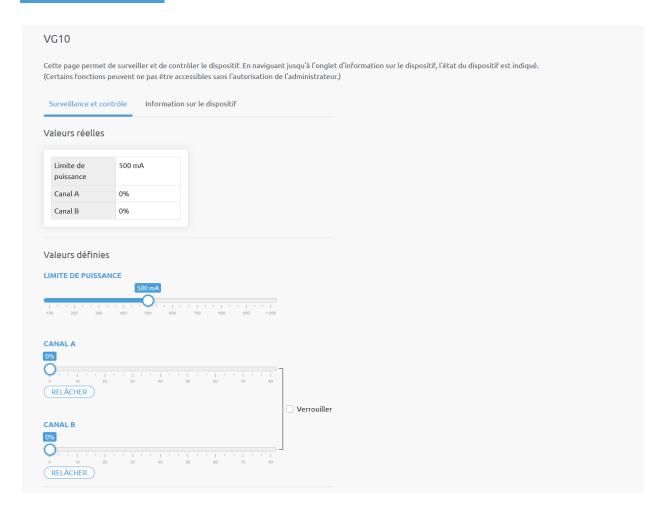
Les États du préhenseur peuvent être :

- Occupé le préhenseur se déplace.
- Initialisé le préhenseur a été initialisé.

Sélectionnez le type d'outil

- **Outil actuel** affiche l'outil SG actuellement sélectionné. Sélectionnez l'outil SG souhaité en cliquant le bouton radio adjacent.
- Cliquez sur **Initialiser** pour initialiser l'outil SG sélectionné

Définir le mode de préhension et la largeur


La vitesse de préhension par défaut est définie comme **Préhension douce**, la vitesse de préhension diminue à 12,5 mm avant la largeur cible spécifiée. Par conséquent la préhension est plus douce par rapport à des réglages de préhension normale.

Le préhenseur peut être contrôlé en ajustant le curseur **Largeur cible**, cela contrôle immédiatement le préhenseur.

- Largeur actuelle affiche la largeur actuelle du préhenseur.
- Bouton **Arrêter** arrête la procédure en cours.
- Bouton **Point initial** déplace le préhenseur à sa position initiale.

VG10 / VGC10

Le niveau de dépression actuel pour **Canal A** et **Canal B** peut être affiché en pourcentage (dans la plage de 0...80 kPa de dépression). La valeur réelle de **Limite de puissance** est indiquée en mA.

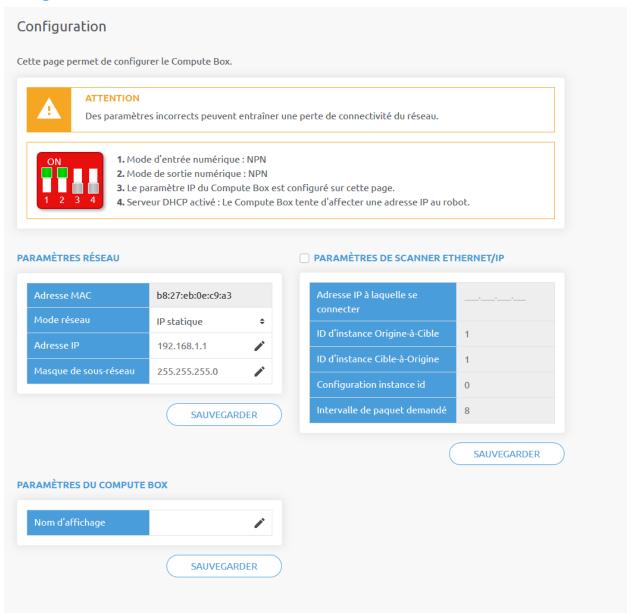
La **Limite de puissance** peut être réglée dans la plage de 0...1000 mA avec le curseur.

NOTE:

La limite de puissance définie sur cette page n'est pas enregistrée de façon permanente et elle est toujours rétablie à la valeur par défaut lors de la réinitialisation de l'alimentation.

Limite de puissance supérieure signifie que le niveau de dépression requis est atteint plus vite (débit d'air plus important), mais s'il est trop rapide, un dépassement peut s e produire.

Une faible limite de puissance peut ne pas suffire pour un pourcentage élevé de vide et le niveau de vide cible peut ne pas être atteint.


Le niveau de dépression du **Canal A** et du **Canal B** peut être réglé individuellement ou en tandem en cochant la case **Verrouiller**.

Veillez à régler une dépression suffisamment élevée avant de saisir et de soulever un objet.

Pour relâcher l'objet saisi, cliquez sur le bouton **Relâcher**.

Configuration menu

Paramètres réseau:

L'Adresse MAC est un identifiant unique pour le monde entier défini pour l'appareil.

Le menu déroulant **Mode réseau** peut être utilisé pour décider si le Compute Box doit avoir une adresse IP statique ou dynamique :

- S'il est réglé sur **IP dynamique**, le Compute Box attendune adresse IP d'un serveur DHCP. Si le réseau auquel est connecté l'appareil n'a pas de serveur DHCP, l'adresse IP fixe 192.168.1.1 est utilisée pour l'appareil (après 60 secondes de temporisation).
- S'il est réglé sur **IP statique**, une adresse IP fixe et un masque de sous-réseau doivent être configurés.
- S'il est réglé sur **IP statique par défaut**, l'adresse IP fixe revient à celle par défaut et ne peut pas être modifiée.

Une fois tous les paramètres configurés, cliquez sur le bouton **Sauvegarder** pour enregistrer les nouvelles valeurs de façon permanente. Attendez 1 minute et reconnectez-vous au dispositif en utilisant les nouveaux paramètres.

Paramètres du Compute Box / Eye Box:

Au cas où plusieurs Compute Box sont utilisés dans le même réseau pour identification, n'importe quel nom d'utilisateur spécifique peut être entré dans le **Nom d'affichage**.

Paramètres de scanner EtherNet/IP:

NOTE:

Il s'agit d'une option spéciale de la connexion Ethernet/IP pour certains robots.

Si le robot est l'adaptateur et que le Compute Box doit être le scanner, les informations supplémentaires suivantes sont nécessaires pour la communication :

- Adresse IP à laquelle se connecter l'adresse IP du robot
- ID d'instance Origine-à-Cible se reporter au manuel EtherNet/IP du robot (mode scanner)
- ID d'instance Cible-à-Origine se reporter au manuel EtherNet/IP du robot (mode scanner)
- ID d'instance de configuration reportez-vous au manuel EtherNet/IP du robot (mode scanner)
- Intervalle de paquet demandé (ms) valeur du RPI en ms (minimum 4)

Cochez la case et le Compute Box tente de se connecter automatiquement au robot (via l'adresse IP indiquée).

Trajectoires menu

NOTE:

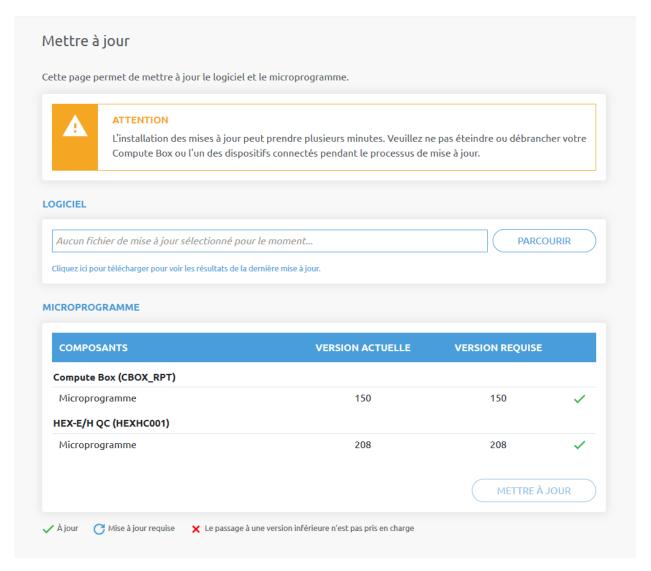
La fonction Chemin peut ne pas être disponible pour votre type de robot.

Cette page peut être utilisée pour importer, exporter et supprimer les chemins précédemment enregistrés. De cette manière, il est possible de copier une Trajectoire vers un autre Compute Box.

Pour importer un chemin précédemment exporté (fichier .ofp) cliquez sur **Importer** et faites défiler pour rechercher le fichier.

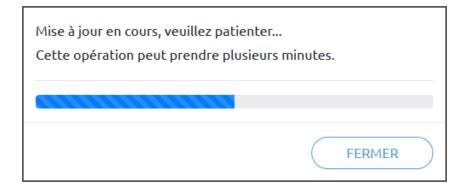
La liste des trajectoires disponibles apparaît à la fin de la page. N'importe quelle trajectoire peut être exportée et téléchargée comme fichier .ofp file, ou supprimée définitivement pour alléger la liste si une trajectoire n'est plus nécessaire.

NOTE:


Veillez toujours à ne pas supprimer un chemin en cours d'utilisation dans l'un des programmes de votre robot. Sinon la trajectoire devra être réenregistrée, puisque l'opération de suppression ne peut pas être annulée.

Le Compute Box peut stocker jusqu'à 100 Mo de trajectoires, ce qui équivaut à environ 1000 heures d'enregistrement.

Mettre à jour menu


Cette page permet de mettre à jour le logiciel sur le Compute Box et le microprogramme sur les appareils.

Démarrez la mise à jour du logiciel en cliquant sur le bouton **Parcourir** pour accéder au fichier de mise à jour logiciel. cbu.

Le bouton Parcourir passe ensuite sur Mettre à jour.

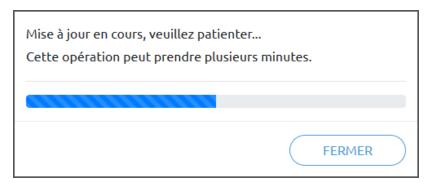
Cliquez sur ce bouton **Mettre à jour** pour démarrer le processus de mise à jour du logiciel :

ATTENTION:

Pendant le processus de mise à jour (environ 5 à 10 minutes) NE PAS débrancher d'appareil ou fermer la fenêtre du navigateur. Sinon l'appareil mis à jour pourrait être endommagé.

Si la mise à jour s'achève avec succès, le message suivant apparaît :

Maintenant, déconnectez le dispositif et utilisez-le comme d'habitude.

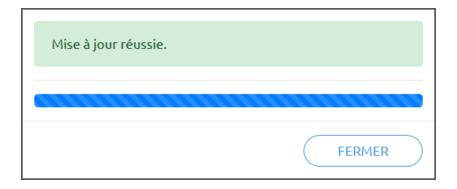


NOTE:

En cas d'échec de la mise à jour logicielle, veuillez contacter votre distributeur.

La mise à jour logicielle n'est nécessaire que quand l'un des composants [©] est obsolète.

Pour démarrer la mise à jour logicielle, cliquez sur le bouton **Mettre à jour** dans la section de microprogramme de la page.



ATTENTION:

Pendant le processus de mise à jour (environ 5 à 10 minutes) NE PAS débrancher d'appareil ou fermer la fenêtre du navigateur. Sinon l'appareil mis à jour pourrait être endommagé.

Si la mise à jour s'achève avec succès, le message suivant apparaît :

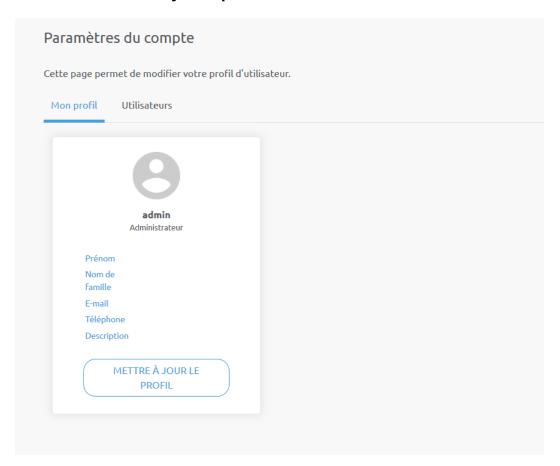
Maintenant, déconnectez le dispositif et utilisez-le comme d'habitude.

NOTE:

En cas d'échec de la mise à jour, veuillez contacter votre distributeur.

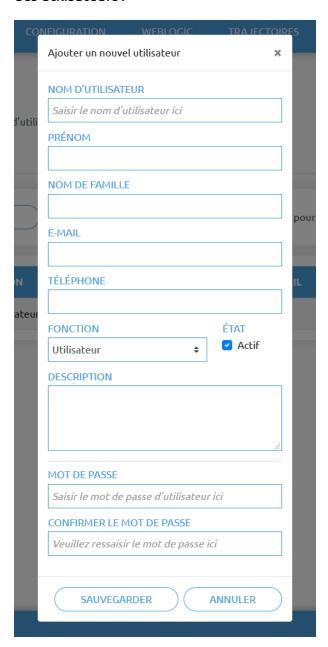
Ce menu peut être utilisé pour :

- Voir l'utilisateur actuellement
- Allez sur Paramètres du compte
- Déconnecter


connecté

Paramètres du compte :

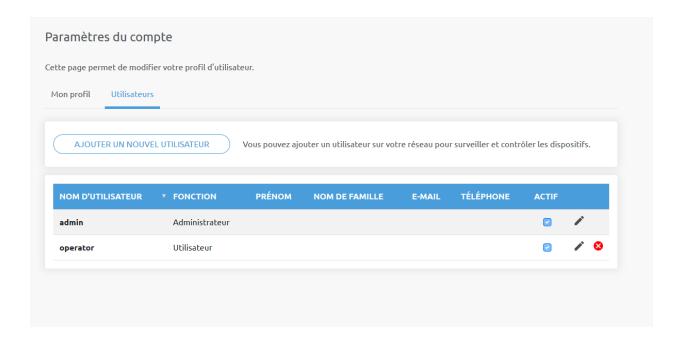
Cette page possède deux onglets:


- Mon profil pour voir et mettre à jour le profil utilisateur actuellement connecté (ex. : modifier le mot de passe)
- Utilisateurs pour gérer les utilisateurs (par ex : ajouter/supprimer/modifier)

Dans l'onglet **Mon profil**, pour changer des données de profil (par ex. : mot de passe) cliquez sur le bouton **Mettre à jour le profil**.

Dans l'onglet **Utilisateurs**, cliquez sur le bouton **Ajouter un nouvel utilisateur** pour ajouter des utilisateurs:

Il existe trois niveaux d'utilisateurs:


- Administrateur
- Opérateur
- Utilisateur

Saisir les informations sur l'utilisateur et cliquez sur **Sauvegarder**.

Plus tard, pour changer des informations d'utilisateur, cliquez simplement sur l'icône de modification $^{\prime}$.

Pour empêcher un utilisateur de se connecter, il peut être :

- désactivé en changeant son statut **Actif** en mode Éditer
- ou supprimé en cliquant sur l'icône Supprimer [™] .

9 Spécification du matériel

9.1 Fiches techniques

□ 3FG15122
☐ Gecko127
☐ HEX-E QC130
☐ HEX-H QC132
Quick Changer134
Quick Changer for I/O134
Dual Quick Changer134
Quick Changer - Tool side 134
□ RG2-FT135
□ RG2140
□ RG6143
□ SG146
□ VG10151
□ VGC10158

3FG15

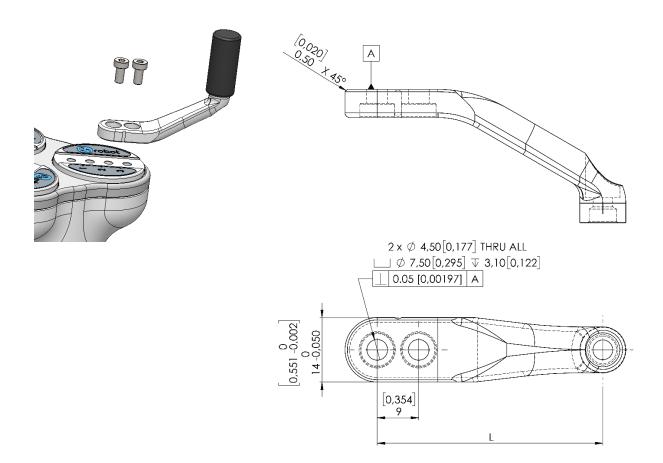
Propriétés général	es	Minimum	Туре	Maximum	Unité			
Charge utile (par liai	-	-	10 22	[kg] [lb]				
Charge utile (par liai	-	-	15 33	[kg] [lb]				
Diamètre de	Externe	4 0,16		152 5,98	[mm] [pouce]			
préhension*	Interne 🗘	35 1,38	-	176 6,93	[mm] [pouce]			
Résolution de positi	on de doigt	-	0,1 0,004	-	[mm] [pouce]			
Précision de répétiti	-	0,1 0,004	0,2 0,007	[mm] [pouce]				
Force de préhension	l	10	-	240	[N]			
Force de préhension	ı (ajustable)	1	-	100	[%]			
Vitesse de préhension diamètre)	on (changement de	-	-	125	[mm/s]			
Temps de préhensio freins comprise)**	n (activation des	-	500	-	[ms]			
Maintien de la pièce puissance?	en cas de perte de	Oui						
Température de sto	ckage	0 32	-	60 122	[°C] [°F]			
Moteur		Intégrée, BLDC électrique						
Classification IP		IP67						
Dimensions [L, l, Ø]	156 x 158 x 6,14 x 6,22 x		[mm] [pouce]					
Poids	1,15 2,5	[kg] [lb]						

^{*} Avec le contenu de la livraison

^{**} Distance de diamètre de 10 mm. Voir également la section Mouvement des doigts et force à la page 121

Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Alimentation électrique	20	24	25	[V]
Consommation de courant	43	-	1500*	[mA]
Température de fonctionnement	5 41	-	50 122	[°C] [°F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement moyen entre les pannes)	30 000	-	-	[Heures]

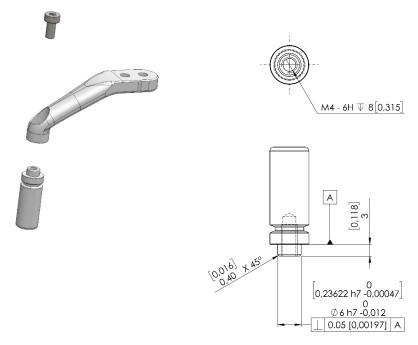
^{*600} mA par défaut.



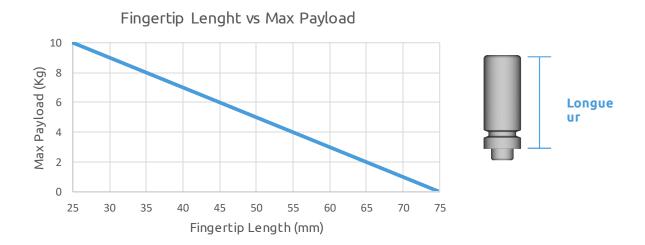
Doigts

Les doigts fournis peuvent être montés dans 3 positions différentes pour obtenir différentes Force de préhensions below et différents Diamètre de préhensions below.

La longueur des doigts fournis est de 49 mm (L dans le schéma ci-dessous). Si des doigts personnalisés sont requis, ils peuvent être configurés pour s'adapter aux Gripper selon les dimensions (mm) [pouce] indiquées ci-dessous : Les vis requises sont de M4x8 mm :

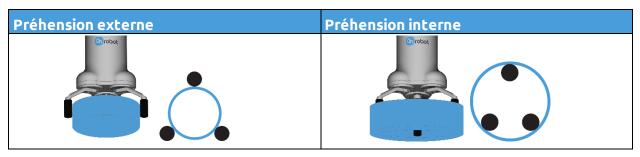


Bout de doigts

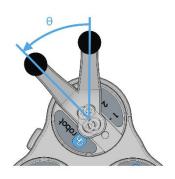

Les bouts de doigts fournis sont répertoriés ci-dessous. Des bouts de doigts différents offriront différentes Force de préhensions below et différents Diamètre de préhensions below.

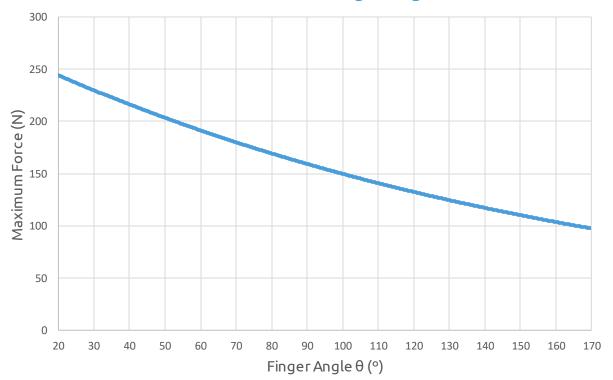
- Ø10 mm en acier
- Ø13 mm en acier
- Ø13,5 mm en silicone
- Ø16,5 mm en silicone

Si des bouts de doigts personnalisés sont requis, ils peuvent être configurés pour s'adapter aux doigts du préhenseur selon les dimensions (mm) [pouce] indiquées ci-dessous : Les vis requises sont de M4x8 mm :


Dans le graphique ci-dessous, la charge utile maximum autorisée pour un bout de doigt personnalisé donné, une longueur est indiquée.

Types de préhensions


Dans ce document, les termes de préhension interne et externe sont utilisés. Ces préhensions font référence à la manière dont est saisie la pièce de travail.


Force de préhension

La force de préhension totale dépend fortement de l'angle de doigt θ . Pour une préhension interne et externe, plus l'angle de doigt est faible, plus la force appliquée sera élevée, comme indiqué dans le graphique ci-dessous.

Bien que les doigts puissent se déplacer de 0 à 180°, la plage d'angles d'une préhension externe est de 30°-165° et 20°-160° pour une préhension interne

Maximum Force and Finger Angle θ

Graphique tracé à partir de mesures avec un courant de 1 A, le bout des doigts en silicone et une pièce de travail métallique.

NOTE:

La force totale appliquée dépend de l'angle du doigt, du courant d'entrée (limité dans la connexion de la bride de l'outil de certains robots) et du coefficient de frottement entre les matériaux du bout des doigts et la pièce de travail.

Mouvement des doigts et force

L'action de préhension compte deux phases :

Phase 1 : Pour des raisons de sécurité, les doigts se mettront à bouger avec une faible force (maximum ~50 N) pour éviter d'endommager tout ce qui pourrait être coincé entre les doigts du préhenseur et la pièce de travail.

Phase 2: Lorsque le diamètre du préhenseur est très proche du diamètre cible programmé, le préhenseur augmente la force de préhension avec la force cible programmée. Après la préhension, un frein est activé (déclic). L'activation du frein, aussi appelée Force de préhension détectée, peut être vérifiée dans l'interface utilisateur. Ce frein maintiendra la pièce de travail avec la force appliquée, sans consommation d'énergie et en maintenant la pièce en cas de perte de puissance. Ce frein se désactive automatiquement lorsque le préhenseur exécute une commande de relâchement ou une nouvelle commande de préhension. Lors de la programmation du préhenseur, le frein peut être désactivé en utilisant les fonctionnalités présentes dans l'interface.

Diamètre de préhension

Les différentes configurations du doigt et des bouts de doigts fournis permettent d'offrir une large plage de diamètres.

Position de doigts	Bout de doigt (mm)	Plage de préhension externe (mm)	Plage de préhension interne (mm)		
	Ø10	10 – 117	35 – 135		
1	Ø13	7 – 114	38 – 138		
	Ø16,5	4 – 111	41 – 140		
	Ø10	26 – 134	49 – 153		
2	Ø13	23 – 131	52 – 156		
	Ø16,5	20 – 128	55 – 158		
	Ø10	44 – 152	65 – 172		
3	Ø13	41 – 149	68 – 174		
	Ø16,5	38 – 146	71 – 176		

En fonction de:

- Angle de préhension externe mini. 165° (Pos 1), 163° (Pos 2), 161° (Pos 3) et maxi. 30° (les 3 positions)
- Angle de préhension interne mini. 160° et maxi. 30°

Plus on approche de la plage de diamètre maximum, plus l'angle est faible et donc plus la force est élevée.

Gecko

Propriétés générales					Unité		
Préhenseur							
Matériau de la pièce de travail	Acier poli						
Charge utile maximum (x 2 facteur de sécurité)	6,5 14,3	6,5 14,3	5,5 12,1	5,5 12,1	[kg] [lb]		
Précharge requise pour adhérence max.	140				[N]		
Temps de détachement	300				[ms]		
Maintient la pièce en cas de perte de puissance ?	oui						
Coussinets							
Intervalle de remplacement	150 000 à 200 000 cycles pour précharge ÉLEVÉE 200 000 à 250 000 cycles pour précharge BASSE						
Nettoyage manuel	Alcool iso	propyle et	chiffon non	pelucheux			
Système de nettoyage robotisé	Station de	e nettoyag	e				
Intervalle de nettoyage robotisé et récupération en %	Consultez nettoyage		'utilisation d	le la station d	le		
Capteurs							
	Capteur précharge	de	Capteur de _l	plage ultrasc	onique		
Plage	45 [N] 9 [lb]	140 [N] 31 [lb]	0	260 [mm] 10 [pouce]	[N] [mm] [lb] [pouce]		
Erreur	7 %		2 %				
Classification IP	42						
Dimensions (Hxl)	187 x 146 7,3 x 5,7	[mm]					
Poids	2,85 6,3	[pouce] [kg] [lb]					

NOTE:

Évitez de précharger le préhenseur avec un robot inversé ou dans des conditions de chargement non vertical. En cas de précharge pendant une inversion, le capteur de précharge ne répondra pas aux normes de performance standard.

Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Température	0	-	50	[°C]
	32	-	122	[°F]
Caractéristiques de la surface*	Finition mate	Très polie	-	

^{*} Les surfaces plus lisses nécessitent moins de force de précharge pour une force de charge utile souhaitée.

Spécification ou caractéristique	Valeur cible
Détection de présence de pièces	Oui (ultrasonique)
Matériau des coussinets	Mélange de silicone breveté
Propriétés d'usure	Dépend de la rugosité de la surface et de la précharge
Mécanisme de fixation des coussinets	Magnétique
Intervalle de remplacement	150 000 – 200 000 pour PRÉCHARGE ÉLEVÉE 200 000 – 250 000 pour PRÉCHARGE BASSE
Système de nettoyage	Station de nettoyage
Intervalle de nettoyage et récupération en %	Voir le manuels de la station de nettoyage

Efficacité sur différents matériaux

Le préhenseur Gecko est idéal pour les substrats lisses, de faible rugosité qui sont généralement plats, rigides et raides. Pour les autres matériaux, l'efficacité du préhenseur Gecko chute en fonction de la rigidité et de la raideur de la surface de ramassage. Le tableau cidessous présente la relation entre les substrats rigides et flexibles, la finition de surface, la charge utile et la précharge requise pour ramasser le dit substrat. Par exemple, si le client sait que sa pièce/son substrat est rigide, avec une finition de type miroir et pèse 2 kg, la précharge requise pour saisir la pièces/le substrat est moyenne.

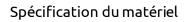
Flexibilité	Finition de surface	Charge utile (kg)	Précharge requise
		0 à 2	Bas
	Finition miroir	2 à 4	Moyen
		4 à 6	Haut
		0 à 2	Moyen
Rigide	Lisse	2 à 4	Haut
		4 à 6	S/O
		0 à 2	Haut
	Mat	2 à 4	S/O
		4 à 6	S/O
		0 à 2	Moyen
	Finition miroir	2 à 4	Haut
		4 à 6	S/O
		0 à 2	Haut
Souple	Lisse	2 à 4	S/O
		4 à 6	S/O
		0 à 2	S/O
	Mat	2 à 4	S/O
		4 à 6	S/O

Pour mettre en exergue l'importance de la relation entre précharge et charge utile, le tableau ci-dessous présente une matrice visuelle de la capacité du préhenseur Gecko à saisir différents matériaux de rigidité et de rugosité différentes, à trois valeurs de précharge différentes (basse 40 N, moyenne 90 N, élevée 140 N).

			Pré	cha	rge	- 1	140	N	Ргé	cha	rge	<u> - 9</u>	90 1	N	Ргé	cha	rge	- 4	10	Ν
Rigidité Rugosité	Exemple de matériau	Cha	ırge	uti	le [kg]	Charge utile [kg]]	Charge utile [kg]						
		maccriad	0,1	0,5	1	2	4	6	0,1	0,5	1	2	4	6	0,1	0,5	1	2	4	6
1	1	Mylar	✓	✓	✓	*			✓	✓	*				✓	*				
5	1	Feuille transparente	✓	✓	✓	>	*		✓	✓	*				>	*				
10	1	Acier poli de type miroir, panneau solaire	✓	✓	✓	√	√	✓	✓	✓	✓	√	✓	*	√	✓	✓	√	*	
1	5	Film alimentaire, sachets ziploc	✓	✓	*				√	*					✓	*				
5	5	Carton brillant (boîte de céréales)	✓	√	*				✓	*					✓	*				
10	5	Carte de circuits imprimés	✓	√	✓	✓	*		✓	✓	*				✓	*				
1	10	Plastic / film stratifié	*																	
5	10	Carton ondulé																		
10	10	Aluminium sablé																		

[✓] le préhenseur peut facilement saisir le matériau

Rien le préhenseur ne peut pas saisir ce type de matériau.


NOTE:

Ce tableau doit être utilisé comme guide pour mieux comprendre la capacité de charge utile et le type de substrat pour le préhenseur Gecko.

Les critères de rigidité et de rugosité ont une échelle de de 1 à 10. Voici les références utilisées pour déterminer les valeurs.

Rigidité	Description	Exemple
1	Souple	Tissu
5	Semi-flexible	Carton
10	Rigide	Métal

^{*} le préhenseur peut saisir le matériau dans certains cas (nécessite de l'attention et un test de vérification)

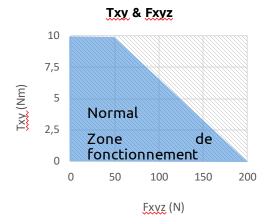
Rugosité	Description		Valeur RMS
1	Poli/Lisse	Métal poli	0,1 micron
5	Texturé	Carton	7 microns
10	Rugueux	Métal sablé	28 microns

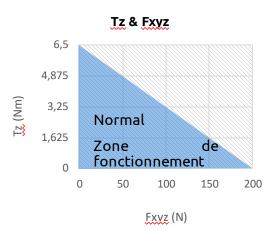
HEX-E QC

Propriétés générales	Capteur f	S	Unité		
	Fxy	Fz	Тху	Tz	
Capacité nominale (CN)	200	200	10	6,5	[N] [Nm]
Déformation à axe unique à CN (type)	±1,7 ±0,067	±0,3 ±0,011	±2,5 ±2,5	±5 ±5	[mm] [°] [pouce] [°]
Surcharge d'axe unique	500	500	500	500	[%]
Bruit du signal* (type)	0,035	0,15	0,002	0,001	[N] [Nm]
Résolution sans bruit (type)	0,2	0,8	0,01	0,002	[N] [Nm]
Non-linéarité à grande échelle	< 2	< 2	< 2	< 2	[%]
Hystérèse (mesurée sur l'axe Fz, type)	< 2	< 2	< 2	< 2	[%]
Diaphonie (type)	< 5	< 5	< 5	< 5	[%]
Classification IP	67				
Dimensions (H x l x L)	50 x 71 x 9 1,97 x 2,79		[mm] [pouce]		
Poids (avec plaques d'adaptation intégrées)	0,347 0,76	[kg] [lb]			

^{*} Le bruit du signal est défini comme étant l'écart-type (1 σ) d'un signal sans charge d'une seconde type.

Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Alimentation électrique	7	-	24	[V]
Consommation électrique	-	-	0,8	[W]
Température de fonctionnement	0 32	-	55 131	[°C] [°F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement moyen entre les pannes)	30 000	-	-	[Heures]


Chargement complexe


Durant le chargement d'axe unique, le capteur peut fonctionner jusqu'à sa capacité nominale. Au-dessus de la capacité nominale, le relevé est inexact et invalide.

Durant le chargement complexe (quand plus d'un axe est chargé), les capacités nominales sont réduites. Les schémas suivants illustrent des scénarios de chargement complexe.

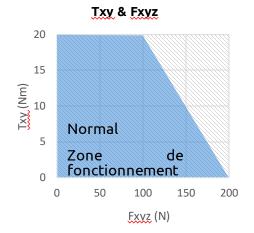
Le capteur ne peut pas fonctionner en-dehors de la zone de fonctionnement normale.

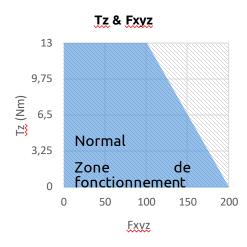
HEX-H QC

Propriétés générales	Capteur f	Capteur force-couple sur 6 axes			
	Fxy	Fz	Тху	Tz	
Capacité nominale (CN)	200	200	20	13	[N] [Nm]
Déformation à axe unique à CN (type)	±0,6 ±0,023	±0,25 ±0,009	±2 ±2	±3,5 ±3,5	[mm] [°] [pouce] [°]
Surcharge d'axe unique	500	400	300	300	[%]
Bruit du signal* (type)	0,1	0,2	0,006	0,002	[N] [Nm]
Résolution sans bruit (type)	0,5	1	0,036	0,008	[N] [Nm]
Non-linéarité à grande échelle	< 2	< 2	< 2	< 2	[%]
Hystérèse (mesurée sur l'axe Fz, type)	< 2	< 2	< 2	< 2	[%]
Diaphonie (type)	< 5	< 5	< 5	< 5	[%]
Classification IP	67				
Dimensions (H x l x L)	50 x 71 x 93 1,97 x 2,79 x 3,66				[mm] [pouce]
Poids (avec plaques d'adaptation intégrées)	0,35 0,77				[kg] [lb]

^{*} Le bruit du signal est défini comme étant l'écart-type (1 σ) d'un signal sans charge d'une seconde type.

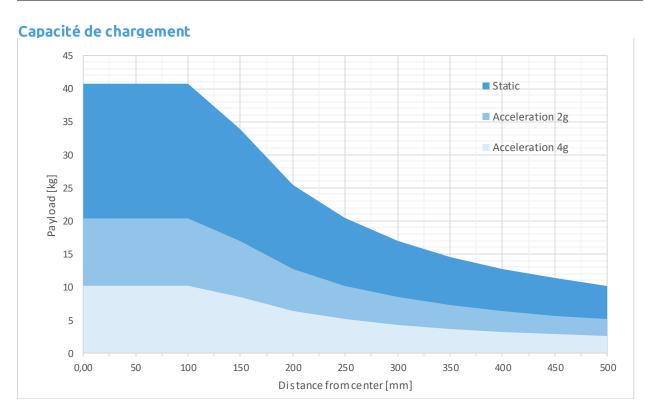
Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Alimentation électrique	7	-	24	[V]
Consommation électrique	-	-	0,8	[W]
Température de fonctionnement	0 32	-	55 131	[°C] [°F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement moyen entre les pannes)	30 000	-	-	[Heures]


Chargement complexe


Durant le chargement d'axe unique, le capteur peut fonctionner jusqu'à sa capacité nominale. Au-dessus de la capacité nominale, le relevé est inexact et invalide.

Durant le chargement complexe (quand plus d'un axe est chargé), les capacités nominales sont réduites. Les schémas suivants illustrent des scénarios de chargement complexe.

Le capteur ne peut pas fonctionner en-dehors de la zone de fonctionnement normale.


Quick Changer Quick Changer pour E/S Dual Quick Changer Quick Changer -Côté outil

Si ce n'est pas spécifié, les données représentent la combinaison de différents types/côtés de Quick Changer.

Caractéristiques techniques	Min.	Туре	Max.	Unités
Force admissible*	-	-	400*	[N]
Couple admissible*	-	-	50*	[Nm]
Charge utile nominale*	-	-	20* 44	[kg] [lb]
Répétabilité	-	-	±0,02	[mm]
Classification IP	64			
Durée de vie utile (changement d'outil)	-	5,000	-	[cycles]
Durée de vie utile (fonctionnement du robot)	10	-	-	[M cycles]

^{*} Voir le graphique de capacités de charge ci-dessous

	Quick Changer	Quick Changer pour E/S	Dual Quick Changer	Quick Changer - Côté outil	Unités
Poids	0,06	0,093	0,41	0,14	[kg]
Polus	0,13	0,21	0,9	0,31	[lb]
Dimensions Voir la section Dimensions mécaniques					

Spécification du matériel

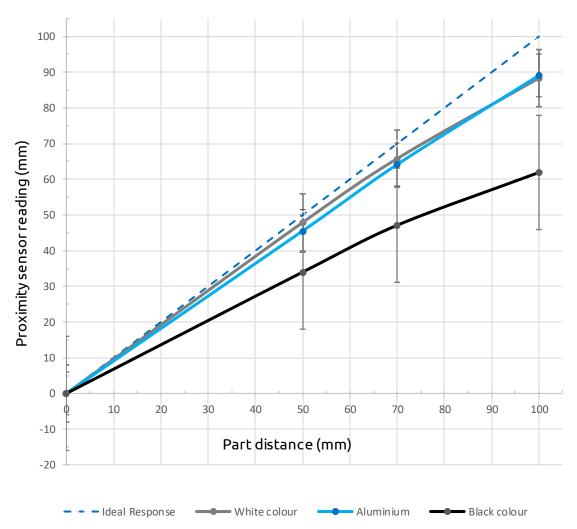
RG2-FT

Propriétés générales	Min.	Туре	Max.	Unités		
Charge utile (par force) liaison de	-	-	2 4,4	[kg] [lb]		
Charge utile (par liaison de forme)	-	-	4 8,8	[Kg] [lb]		
Course totale (ajustable)	0	-	100 3,93	[mm] [pouce]		
Résolution de position de doigt	-	0,1 0,004	-	[mm] [pouce]		
Précision de répétition	-	0,1 0,004	0,2 0,007	[mm] [pouce]		
Jeu entre-dents de recul	0,2 0,007	0,4 0,015	0,6 0,023	[mm] [pouce]		
Force de préhension (ajustable)	3	-	40	[N]		
Vitesse de préhension*	55	110	184	[mm/s]		
Temps de préhension**	0,04	0,07	0,11	[s]		
Précision ajustable de l'inclinaison du support	-	< 1	-	o		
Température ambiante de fonctionnement	5	-	50	[°C]		
Température de stockage	0	-	60	[°C]		
Moteur	Intégrée	Intégrée, BLDC électrique				
Classification IP	IP54					
Dimensions	219 x 149 x 49 [mm] 8,6 x 5,9 x 1,9 [pouce]					
Poids du produit	0,98 [kg] 2,16 [lb]					

^{*} voir le graphique de vitesses 134

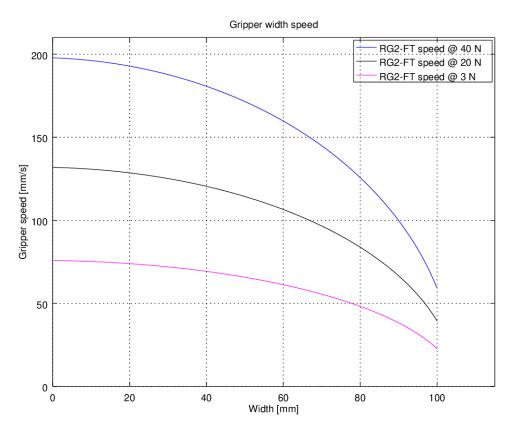
^{**} en fonction d'un déplacement total de 8 mm entre les doigts La vitesse est linéairement proportionnelle à la force. Pour plus détails reportez-vous au graphique de vitesses à la page 134.

Propriétés du capteur de force	Fxy	Fz	Тху	Tz	Unités
Capacité nominale (CN)	20	40	0,7	0,5	[N] [Nm]
Surcharge d'axe unique	200	200	200	200	[%]
Résolution sans bruit	0,1	0,4	0,008	0,005	[N] [Nm]
Déformation à axe unique à CN	0,4 0,015	0,1 0,04	2	5	[mm] [°] [pouce] [°]
Non-linéarité à grande échelle Compensation de température	< 2	•			[%]

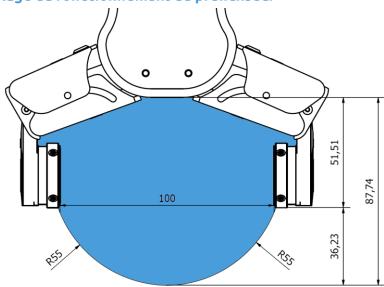


Propriétés du capteur de proximité	Min.	Туре	Max.	Unités
Plage de détection	0	-	100	[mm]
Plage de détection	0	-	3,93	[pouce]
Précision	-	2	-	[mm]
	-	0,078	-	[pouce]
Non-linéarité*	-	12	-	[%]

^{*} la non-linéarité fait référence à la valeur max et dépend des propriétés de l'objet (par ex. type de surface et couleur)

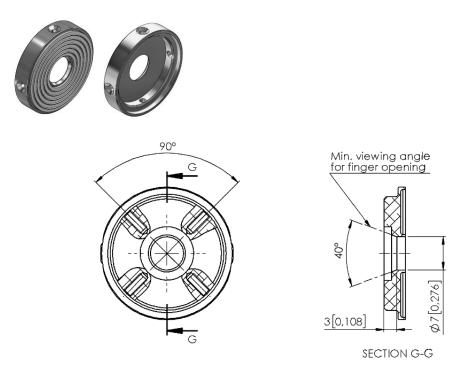

Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Puissance requise (PELV)	24	-	24	[V]
Consommation électrique	6,5	-	22	[W]
Température de fonctionnement	0 32	-	55 131	[°C] [°F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement moyen entre les pannes)	30 000	-	-	[Heures]

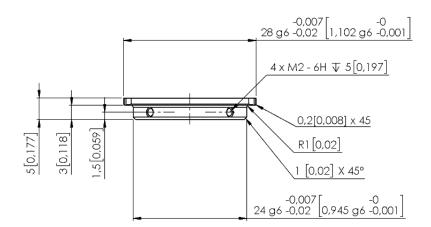
Précision typique du capteur de proximité

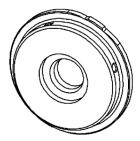


Graphique de vitesse de préhension RG2-FT

Plage du fonctionnement du préhenseur




Les dimensions sont en millimètres.



Bout de doigts

Les bouts de doigts standard peuvent être utilisés pour de nombreuses pièces différentes. Si des bouts de doigts personnalisés sont requis, ils doivent être adaptés aux doigts du préhenseur.

Dimensions du doigt du préhenseur, en millimètres.

NOTE:

Lors de la conception des bouts de doigts, prenez ce qui suit en considération pour conserver des performances optimales :

Chemin optique dégagé pour les capteurs de proximité

Protégez les capteurs de proximité contre la lumière directe du soleil ou une source lumineuse intense

Évitez la pénétration de poussière et de liquide

AVERTISSEMENT:

Les capteurs de proximité sont des pièces sensibles et doivent être protégés contre :

Lumière directe du soleil (comme des sources de laser directionnelles)

Température élevée directe

Contacts mécaniques de toute sorte

Exposition à un liquide ou une poussière fine conductrice

NOTE:

Veuillez nettoyer régulièrement la surface du capteur de proximité à l'air comprimé basse pression (<5 bars) à 5 cm de distance. Contre une forte contamination, utilisez de l'alcool isopropyle avec un coton-tige doux pour le garder propre.

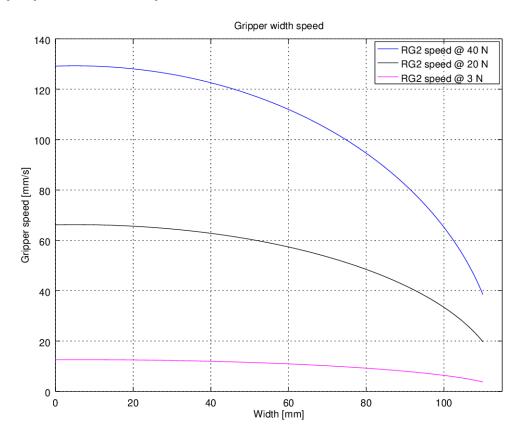
Épaisseur des doigts

Les bouts de doigts par défaut sont considérés quand l'épaisseur des doigts a été définie et n'a pas pu être modifiée dans le logiciel. Dans le cas où des bouts de doigts personnalisés sont utilisés, l'utilisateur doit compenser manuellement la différence d'épaisseur de doigts.

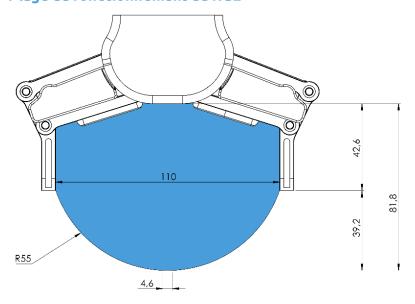
RG2

Propriétés générales	Minimum	Туре	Maximum	Unité
Charge utile (par force) liaison de	-	-	2 4,4	[kg] [lb]
Charge utile (par forme) liaison de	-	-	5 11	[kg] [lb]
Course totale (ajustable)	0	-	110 4,33	[mm] [pouce]
Résolution de position de doigt	-	0,1 0,004	-	[mm] [pouce]
Précision de répétition	-	0,1 0,004	0,2 0,007	[mm] [pouce]
Jeu entre-dents de recul	0,1 0,004	-	0,3 0,011	[mm] [pouce]
Force de préhension (ajustable)	3	-	40	[N]
Écart de la force de préhension		±25		%
Vitesse de préhension*	38	-	127	[mm/s]
Temps de préhension**	0,06	-	0,21	[s]
Précision ajustable de l'inclinaison du support	-	< 1	-	۰
Température de stockage	0 32	-	60 140	[°C] [°F]
Moteur	Intégrée, BLDC électrique			
Classification IP	IP54			
Dimensions	213 x 149 x 36 [mm] 8,3 x 5,9 x 1,4 [pouce			[mm] [pouce]
Poids	0,78 1,72			[kg] [lb]

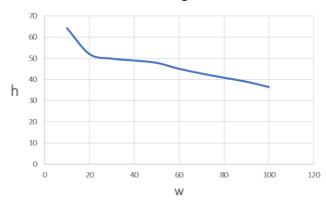
^{*} voir le tableau à la page suivante


^{**} en fonction d'un déplacement total de 8 mm entre les doigts La vitesse est linéairement proportionnelle à la force. Pour plus détails reportez-vous au graphique de vitesses à la page suivante.

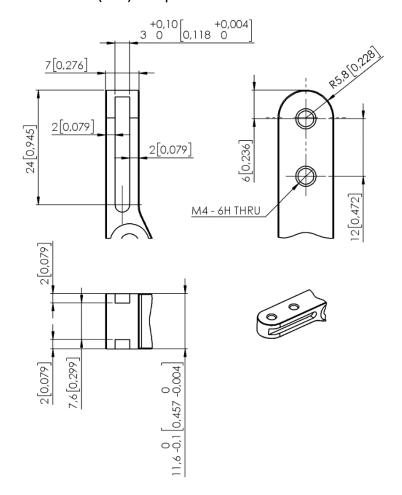
Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Alimentation électrique	20	24	25	[V]
Consommation de courant	70	-	600*	[mA]
Température de fonctionnement	5 41	-	50 122	[°C] [°F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement moyen entre les pannes)	30 000	-	-	[Heures]


^{*}Des crêtes de courant jusqu'à 3 A (max 6 mS) peuvent survenir pendant l'action de relâchement.

Graphique de vitesse de préhension RG2



Plage du fonctionnement du RG2


La préhension sur de longs objets peut accidentellement déclencher les interrupteurs de sécurité. La hauteur maximale de pièce (calculée à partir de l'extrémité des bouts de doigts) dépend de la largeur de préhension (w). La limite de hauteur (h) est fournie ci-dessous pour les différentes valeurs de largeur :

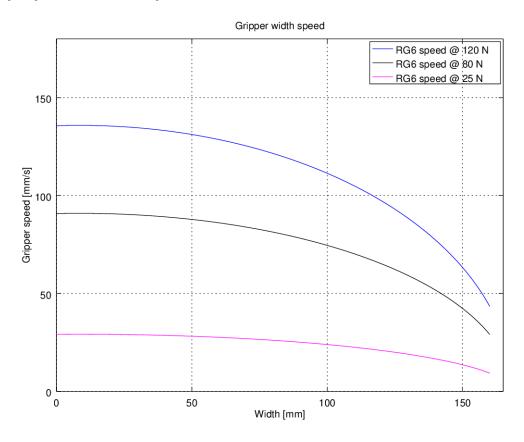
Bout de doigts

Les bouts de doigts standard peuvent être utilisés pour de nombreuses pièces différentes. Si des bouts de doigts personnalisés sont requis, ils peuvent être configurés pour s'adapter aux doigts du préhenseur selon les dimensions (mm) indiquées ci-dessous :

RG6

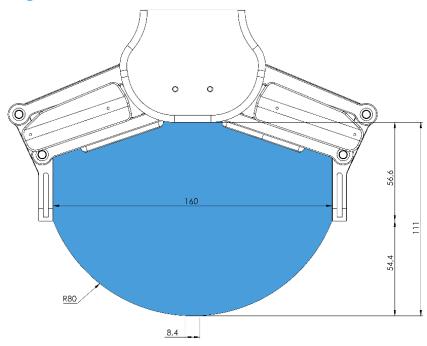
Propriétés générales	Minimum	Туре	Maximum	Unité	
Charge utile (par force) liaison de	-	-	6 13,2	[kg] [lb]	
Charge utile (par forme) liaison de	-	-	10 22,04	[Kg] [lb]	
Course totale (ajustable)	0 -	-	160 6,3	[mm] [pouce]	
Résolution de position de doigt	-	0,1 0,004	-	[mm] [pouce]	
Précision de répétition	-	0,1 0,004	0,2 0,007	[mm] [pouce]	
Jeu entre-dents de recul	0,1 0,004	-	0,3 0,011	[mm] [pouce]	
Force de préhension (ajustable)	25	-	120	[N]	
Écart de la force de préhension		±25		%	
Vitesse de préhension*	51	-	160	[mm/s]	
Temps de préhension**	0,05	-	0,15		
Précision ajustable de l'inclinaison du support		< 1		٥	
Température de stockage	0 32		60 140	[°C] [°F]	
Moteur	Intégrée, BLDC électrique				
Classification IP	54				
Dimensions				[mm] [pouce]	
Poids	1,25 2,76	[kg] [lb]			

^{*} voir le tableau à la page suivante

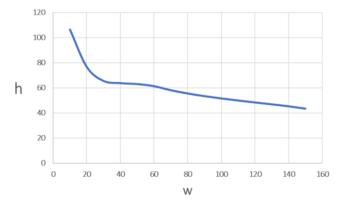

^{**} en fonction d'un déplacement total de 8 mm entre les doigts La vitesse est linéairement proportionnelle à la force. Pour plus détails reportez-vous au graphique de vitesses à la page suivante.

Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Alimentation électrique	20	24	25	[V]
Consommation de courant	70	-	600*	[mA]
Température de fonctionnement	5	-	50	[°C]
remperature de ronctionnement	41	-	122	[°F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement	30,000	_	_	[Heures]
moyen entre les pannes)	30 000			[[

^{*}Des crêtes de courant jusqu'à 3 A (max 6 mS) peuvent survenir pendant l'action de relâchement.

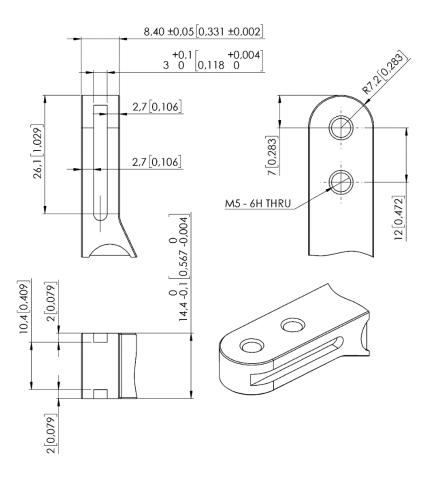


Graphique de vitesse de préhension RG6



Plage du fonctionnement du RG6

La préhension sur de longs objets peut accidentellement déclencher les interrupteurs de sécurité. La hauteur maximale de pièce (calculée à partir de l'extrémité des bouts de doigts) dépend de la largeur de préhension (w). La limite de hauteur (h) est fournie ci-dessous pour les différentes valeurs de largeur :


Bout de doigts

Les bouts de doigts standard peuvent être utilisés pour de nombreuses pièces différentes. Si des bouts de doigts personnalisés sont requis, ils peuvent être configurés pour s'adapter aux doigts du préhenseur selon les dimensions (mm) indiquées ci-dessous:

Spécification du matériel

SG

Propriétés générales	Minimum	Туре	Maximum	Unité
Course de broche totale	11 0,43	-	40 1,57	[mm] [pouce]
Résolution de position de broche	-	0,1 0,0039	-	[mm] [pouce]
Force de broche	-	-	380	[N]
Vitesse de broche	-	-	37 1,46	[mm/s] [pouce/s]
Temps de préhension* (SG-a-H)	-	-	32	[préhension/min]
Mécanisme de fixation d'outil SG	Verrou intel	ligent		
Moteur	Intégrée, BL	DC électric	que	
Classification IP	IP67			
Dimensions (H x Ø)				[mm] [pouce]
Poids	0,77 1,69			[kg] [lb]

^{*}Le temps de préhension dépend de l'outil. Reportez-vous à la fiche de données SG séparée pour le temps de préhension spécifique de l'outil.

Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Alimentation électrique	20	24	25	[V]
Consommation de courant	45	-	600	[mA]
Température de fonctionnement	0 32	-	50 122	[°C] [°F]
Température de stockage	0 32	-	60 140	[C] [F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement moyen entre les pannes)	30 000	-	-	[Heures]

NOTE:

Pour les spécifications techniques des outils SG, consultez la fiche de données SG séparée.

Comment traiter une pièce de travail

Avec les outils SG en silicone élastique, le préhenseur peut traiter une large gamme de pièces de travail, pour un grand nombre d'applications. Différentes conceptions d'outils ont des capacités qui se chevauchent quand il s'agit de la manipulation de la même pièce de travail, mais les outils possèdent des caractéristiques différentes et une efficacité spécifique sur une pièce de travail donnée.

Silicone mou

Différentes conceptions d'outils SG possèdent une partie en silicone mou en haut du préhenseur. Par rapport aux outils en silicone dur, ces outils conviennent mieux à la manipulation de pièces de travail fragiles et/ou de pièces de travail présentant de grandes variances de dimensions. Cela est dû à la nature plus "indulgente" de la partie molle. L'utilisateur peut avoir une charge utile réduite par rapport aux outils en silicone dur.

Pour manipuler correctement une pièce, l'utilisateur doit connaître certains paramètres qui sont définis par les conditions générales de la pièce et sa présentation dans l'application. Cela permet de définir l'outil à choisir et la largeur de prise réelle sur celui-ci.

Ces paramètres font l'objet d'une présentation générale ci-dessous :

- Forme
- Dimension
- Poids
- Rugosité
- Fragilité
- Orientation du prélèvement/placement

Pour mieux comprendre comment manipuler des pièces avec différents paramètres, des tests ont été effectués avec un outil SG-a-H, voir le tableau ci-dessous.

Exemple de matériau	Pièce de travail	Dimension	Poids	Rugosité	Forme	Largeur de préhension réelle
Bois lisse (poncé)	Barre ronde	27 mm	32 g	5	Cylindre	20 mm
Métal poli	Cube d'aluminium	35x25 mm	512 g	1	Carré	15 mm
Métal brut	Cylindre en aluminium	60 mm	490 g	8	Cylindre	55 mm
	Flacon en PET		431 g	1	Cylindre	50 mm
Plastique	РОМ-С	50 mm	221 g	2	Cylindre	42 mm
	POM-C	50 mm	1410 g	2	Cylindre	15 mm
Verre	Verre	68 mm	238 g	1	Cylindre	50 mm
Matériau organique	I / hampianan	54 mm 40 mm	92 g 8 g	2	Rond Rond	53 mm 39 mm
or gamque	Raisin	20 mm	7 g	10	Ovale	16 mm
Fibre de carbone	Cylindre en fibre de carbone	38 mm	48 g	7	Cylindre	29 mm

Notez que les objets de poids élevé nécessitent d'exercer une plus grande force, d'où la faible largeur de préhension.

NOTE:

Les résultats présentés dans le tableau ci-dessus doivent être considérés comme indicatifs et peuvent varier. La largeur de préhension réelle doit toujours être testée, pour vérification.

Il est souvent judicieux de fixer une largeur cible inférieure à la largeur réelle de la pièce, afin d'atteindre une surface de contact plus élevée et de s'adapter aux vibrations et autres conditions inattendues.

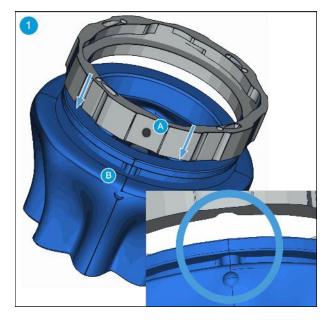
Pour les pièces lourdes et de grande taille, tester à faible vitesse et avec précaution.

NOTE:

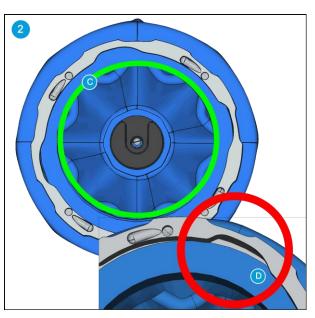
Pour des exemples d'outil SG individuel. Consultez le manuel SG séparé.

Les critères de rugosité ont une échelle de base de 1 à 10, voici les points de référence utilisés pour déterminer les valeurs.

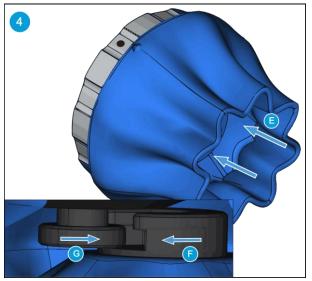
Rugosité	Description	Exemple
1	Poli/Lisse	Métal poli
5	Texturé	Carton
10	Rugueux	Métal sablé



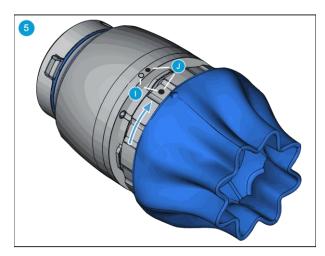
AVERTISSEMENT:


Les arêtes vives d'une pièce peuvent endommager le silicone et réduire la durée de vie de l'outil.

Guide de montage de l'outil SG


Tournez la bague de manière à orienter le repère (A) vers vous. Alignez le point de l'outil SG tool (B) avec le repère (A). Ajustez-les ensemble et montez la bague sur l'outil SG.

Poussez l'outil SG vers le haut contre la bague pour qu'il s'ajuste parfaitement **(C)**. Veillez à ce qu'il n'y ait aucun espace entre l'outil SG et la bague **(D)**.



Il est fortement recommandé d'installer l'embase SG sur le robot avant d'installer l'outil SG. Assurez-vous que l'embase SG est en position initiale ou initialisée.

Utilisez vos pouces pour enfoncer l'intérieur de l'outil SG (E). Cela fait apparaître la partie femelle du verrou intelligent (F). Localisez le repère sur la bague, comme décrit à l'étape 1. Faites correspondre la partie femelle du verrou intelligent de l'outil SG (F) et la partie mâle du verrou intelligent (G).

Alignez les repères (I). Appuyez sur l'outil SG dans l'embase SG et tournez dans le sens horaire pour aligner les deux repères (J).

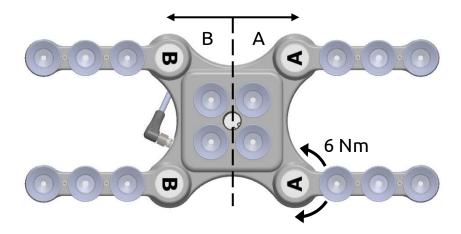
Scannez le code pour accéder à une vidéo expliquant le montage.

AVERTISSEMENT:

Lorsque vous travaillez avec le SG, veillez à ce que le mouvement des préhenseurs vers l'intérieur/vers l'extérieur ne soit pas entravé, sinon le système de positionnement peut se désynchroniser. Si cela se produit, éloignez le point de préhension/relâchement de la pièce de travail, puis réinitialisez le préhenseur.

VG10

Propriétés gén	Minimum	Туре	Maximum	Unité			
Dépression	5 % -0,05 1,5	- - -	80 % -0,810 24	[Dépression] [Bar] [inHg]			
Débit d'air		0	-	12	[L/min]		
Réglage des bra	ns .	0	-	270	[°]		
Couple de main	tien du bras	-	6	-	[Nm]		
Charge utile	Nominale	10 22			[kg] [lb]		
Charge diffe	Maximum	15 33			[kg] [lb]		
Coupes à vide	Coupes à vide			16	[pcs.]		
Temps de préhe	ension	-	0,35	-	[s]		
Temps de relâch	nement	-	0,20	-	[s]		
Pied-pouce-pied	d	-	1,40	-	[s]		
Pompe à vide		Intégrée, B	Intégrée, BLDC électrique				
Bras		4, réglables	4, réglables manuellement				
Filtres antipous	sière	Intégrés de	Intégrés de 50 µm, remplaçable sur site				
Classification IP)	IP54					
Dimensions (replié)			105 x 146 x 146 4,13 x 5,75 x 5,75				
Dimension (déplié)			105 x 390 x 390 4,13 x 15,35 x 15,35				
Poids	1,62 3,57		[kg] [lb]				


Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Alimentation électrique	20,4	24	28,8	[V]
Consommation de courant	50	600	1.500	[mA]
Température de fonctionnement	0 32	-	50 122	[°C] [°F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement moyen entre les pannes)	30 000	-	-	[heures]

Positionnement des bras VG10 et des canaux

Les bras peuvent être repliés à la position préférée simplement en tirant les bras. Le couple requis pour dépasser la friction dans les articulations rotatives du bras est élevé (6 N/m) pour assurer que les bras ne bougent pas lors de la manipulation de charges utiles de 15 kg.

Les ventouses VG10 sot groupées en deux canaux indépendants.

Quand les quatre bras sont ajustés aux angles choisis, il est conseillé d'ajouter les autocollants fléchés qui les accompagnent. Cela permet de facilement réaligner les pièces de travail et d'en changer.

Charge utile

La capacité de levage des préhenseurs VG dépend essentiellement des paramètres suivants :

- Coupes à vide
- Dépression
- Débit d'air

Coupes à vide

Il est essentiel de choisir les bonnes coupes à vide pour votre application. Les préhenseurs VG sont fournis avec des coupes à vide en silicone 15, 30 et 40 mm communes (voir le tableau cidessous) convenant aux surfaces dures et planes, mais pas aux surfaces irrégulières. Elle peuvent laisser de microscopiques traces de silicone sur la pièce de travail pouvant ultérieurement causer des problèmes avec certains types de processus de peinture.

Image	Diamètre extérieur [mm]	Diamètre intérieur [mm]	Surface de préhension [mm2]
(Nobox	15	6	29
(%) reads	30	16	200
6)robot	40	24	450

Les coupes à vide OnRobot sont fortement recommandées pour les matériaux non poreux. Certains des matériaux non poreux les plus courants sont listés ci-dessous :

- Composites
- Verre
- Carton haute densité
- Papier haute densité
- Métaux
- Plastique
- Matériaux poreux avec une surface scellée
- Bois vernis

Dans l'idéal, travailler avec des pièces en matériaux non poreux, où il n'y a pas de flux d'air dans la pièce, le tableau ci-dessus présente le nombre de coupes à vide et la taille de ventouse requise en fonction de la charge utile (masse de pièces de travail) et la dépression utilisée.

Nombre de coupes à vide requis pour les matériaux non poreux en fonction de la charge utile et de la dépression :

	Dyobox			(g) robot				(a) r	obok			
		15r	mm			30m	ım			40r	mm	
Payload	\	/acuur	n (kPa)	V	acuun	ı (kPa)		\	/acuur	n (kPa)
(kg)	20	40	60	75	20	40	60	75	20	40	60	75
0.1	3	2	1	1	1	1	1	1	1	1	1	1
0.5	13	7	5	4	2	1	1	1	1	1	1	1
1	-	13	9	7	4	2	2	1	2	1	1	1
2	-	-	-	14	8	4	3	2	4	2	2	1
3	-	_	-	-	12	6	4	3	5	3	2	2
4	_	-	-	-	15	8	5	4	7	4	3	2
5	-	_	-	-	-	10	7	5	9	5	3	3
6	_	-	-	-	-	12	8	6	10	5	4	3
7	_	_	-	-	-	13	9	7	12	6	4	4
8	-	-	-	-	-	15	10	8	14	7	5	4
9	-	-	-	-	-	-	12	9	15	8	5	4
10	-	-	-	-	-	-	13	10	-	9	6	5
11	-	-	-	-	-	-	14	11	-	9	6	5
12	-	-	-	-	-	-	15	12	-	10	7	6
13	-	-	-	-	-	-	16	13	-	11	8	6
14	-	-	-	-	-	-	-	14	-	12	8	7
15	-	-	-	-	-	-	-	15	-	13	9	7

NOTE:

Une plaque d'adaptateur personnalisée est requise pour utiliser plus de 7 (15 mm), 4 (30 mm) ou 3 (40 mm) coupes à vide avec le VGC10.

Le tableau ci-dessus est créé avec la formule suivante équivalant à la force de levage avec la charge utile en tenant compte de 1,5 G d'accélération.

$$Amount_{Cups} * Area_{Cup}[mm] = 14700 \frac{Payload [kg]}{Vacuum [kPa]}$$

Il est souvent judicieux d'utiliser plus de coupes à vide afin de supporter les vibrations, les fuites et d'autres problèmes inattendus. Cependant, plus il y a de coupes à vide, plus on peut prévoir de fuites d'air (débit d'air) et plus le déplacement d'air est important lors d'une préhension, ce qui allonge les temps de préhension.

Lors de l'utilisation de matériaux poreux, la dépression possible en utilisant les coupes à vide OnRobot dépend du matériau lui-même et se situe dans la plage mentionnée dans les spécifications. Certains des matériaux non poreux les plus courants sont listés ci-dessous :

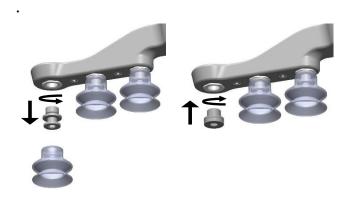
- Tissus
- Mousse
- Mousse à cellules ouvertes

Spécification du matériel

- Carton basse densité
- Papier basse densité
- Matériaux perforés
- Bois non traité

Consultez le tableau de recommandations générales ci-dessous si d'autres coupes à vide sont requises pour des matériaux spécifiques.

Surface de la pièce de travail	Forme de coupe à vide	Matériau de coupe à vide
Dur et plat	Normal ou double lèvre	Silicone ou NBR
Sac en plastique doux ou en plastique	Type sac en plastique spécial	Type sac en plastique spécial
Dur mais courbe ou irrégulier	Double lèvre fine	Silicone ou NBR mou
À peindre ultérieurement	Tout type	NBR uniquement
Hauteurs variables	1,5 biseau ou plus	Tout type


NOTE:

Il est recommandé de consulter un spécialiste des coupes à vide pour trouver la coupe optimale lorsque les types standard sont insuffisants.

Fixations et obturateurs vissés

Il est possible de changer les coupes à vide simplement en tirant dessus pour les retirer des fixations. Il peut être un peu difficile de déposer les coupes à vide de 15 mm de diamètre. Nous proposons d'essayer d'étirer le silicone de l'un des côtés et de le sortir.

Les trous inutilisés peuvent être bouchés par un obturateur vissé, chaque accessoire peut être remplacée par un type différent pour s'adapter à la ventouse désirée. Les fixations et les obturateurs vissés sont fixés ou démontés en les vissant (à 2 Nm) ou en les dévissant avec la clé Allen de 3 mm fournie.

Le filetage couramment utilisé est le G1/8", ce qui permet de monter des fixations, des obturateurs et des extensions standard directement sur les préhenseurs VG.

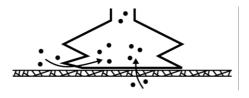
Spécification du matériel

Dépression

Le vide se définit comme le pourcentage de dépression absolue obtenu par rapport à la pression atmosphérique, i.e. :

% de dépression	Ваг	kPa	inHg	Utilisation typique pour
0 %	0,00 rel. 1,01 abs.	0,00 rel. 101,3 abs.	0,0 геl. 29,9 abs.	Pas de vide / Pas de capacité de levage
20 %	0,20 rel. 0,81 abs.	20,3 геl. 81,1 abs.	6,0 rel. 23,9 abs.	Carton et plastiques fins
40 %	0,41 rel. 0,61 abs.			Pièces de travail légères et longue durée de vie des ventouses
60 %	0,61 rel. 0,41 abs.	60,8 rel. 40,5 abs.	18,0 геl. 12,0 abs.	Pièces de travail lourdes et préhensions fortes
80 %	0,81 rel. 0,20 abs.	81,1 rel. 20,3 abs.	23,9 rel. 6,0 abs.	Dépression max. Pas recommandé

La dépression en kPa est la dépression cible. La pompe tourne à plein régime jusqu'à atteindre la dépression cible, puis elle ralentit selon les besoins pour maintenir cette dépression.


La pression atmosphérique varie selon la météo, la température et l'altitude. Les préhenseurs VG compensent automatiquement les altitudes jusqu'à 2 km, où la pression est d'environ 80 % celle au niveau de la mer.

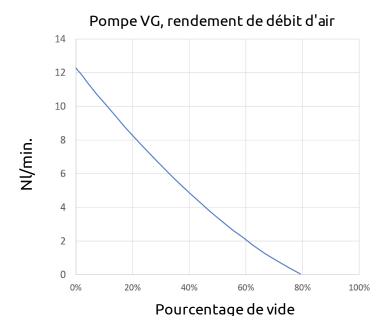
Débit d'air

Le débit d'air est la quantité d'air devant être pompé pour maintenir la dépression cible. Un système complètement étanche ne possède pas de débit d'air, alors que les applications réelles présentent de petites fuites d'air de deux différentes sources :

- Fuite de lèvres de coupes à vide
- Fuite de pièces de travail

La moindre fuite d'une coupe à vide peut être difficile à déceler (voir l'image ci-dessous).

Une fuite de pièces de travail peut être encore plus difficiles à identifier. Ce qui peut paraître totalement étanche peut ne pas l'être du tout. Exemple typique : boîtes en carton brut. La fine couche extérieure demande souvent un débit d'air important pour créer une différence de pression (voir la figure ci-dessous).



Par conséquent, les utilisateurs doivent savoir ce qui suit :

- Les préhenseurs VG ne conviennent pas à la plupart des boîtes en carton brut sans revêtement.
- Il faut faire plus d'attention aux fuites, ex. forme de coupe à vide et rugosité de la surface

La capacité de débit d'air d'un préhenseur VG est illustrée dans le graphique ci-dessous :

0

NOTE:

La manière la plus simple de vérifier l'étanchéité d'une boîte en carton consiste à simplement la tester avec des préhenseurs VG.

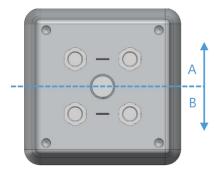
Un réglage de pourcentage de vide élevé n'offre pas plus de capacité de vide sur un carton ondulé. En fait, un réglage plus bas est recommandé, par ex. 20 %.

Un réglage de vide bas entraîne un débit d'air inférieur et une friction moindre sous les coupes à vide. Cela signifie que les filtres et les coupes à vide d'un préhenseur VG durent plus longtemps.

VGC10

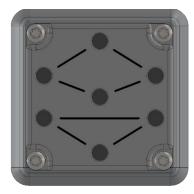
Propriétés g	Minimum	Туре	Maximum	Unité			
Dépression		5 % -0,05 1,5	- - -	80 % -0,810 24	[Dépression] [Bar] [inHg]		
Débit d'air		0	-	12	[L/min]		
Charge utile	Avec fixations par défaut	-	-	6 * 13,2 *	[kg] [lb]		
Charge dute	Avec fixations personnalisées	-	10 22	15 33,1	[kg] [lb]		
Coupes à vid	Coupes à vide		-	7	[pcs.]		
Temps de pre	Temps de préhension		0,35	-	[s]		
Temps de rel	âchement	-	0,20	-	[s]		
Pompe à vide	2	Intégrée, BLDC électrique					
Filtres antipo	oussière	Intégrés de 50 µm, remplaçable sur site					
Classification	٦IP	IP54					
Dimensions		101 x 100 x 100 3,97 x 3,94 x 3,94		[mm] [pouce]			
Poids		0,814 1,79		[kg] [lb]			

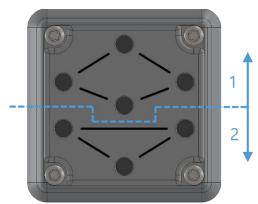
^{*} En utilisant trois coupes à vide de 40 mm. Plus d'info dans le tableau **Nombre de coupes à vide requis pour les matériaux non poreux en fonction de la charge utile et de la dépression** .

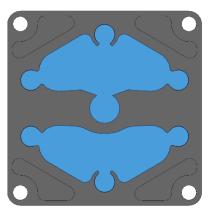

Conditions de fonctionnement	Minimum	Туре	Maximum	Unité
Alimentation électrique	20,4	24	28,8	[V]
Consommation de courant	50	600	1.500	[mA]
Température de fonctionnement	0 32	-	50 122	[°C] [°F]
Humidité relative (sans condensation)	0	-	95	[%]
MTBF calculé (temps de fonctionnement moyen entre les pannes)	30 000	-	-	[heures]

2 canaux

Le VGC10 compte 4 trous pour utiliser des fixations de coupes à vide ou des obturateurs vissés selon les besoins. Il possède aussi des lignes montrant les orifices communiquant entre eux. Ceci est utile en utilisant les canaux A et B indépendamment pour le vide.

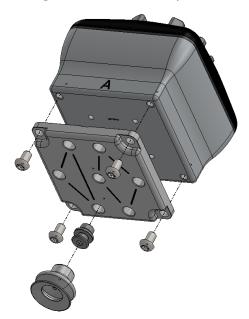





Plaque d'adaptateur

Le VGC10 est doté d'une plaque d'adaptateur qui offre plus de flexibilité pour positionner les coupes à vide dans différentes configurations.

La plaque d'adaptateur compte 7 trous pour utiliser les fixations avec des coupes à vide ou des obturateurs selon les besoins. Elle porte aussi des lignes montrant les orifices communiquant entre eux. Cela est utile lorsque les canaux A et B sont utilisés indépendamment pour la dépression.


La plaque d'adaptateur peut être placée à différentes positions en la pivotant à 90°. En se référant aux lettres A et B écrites sur le boîtier du préhenseur, la plaque d'adaptateur peut être placée de manière à séparer les deux canaux ou à les faire communiquer. Si la plaque d'adaptateur est placée comme illustré ci-dessous à gauche, les deux canaux sont séparés et ils peuvent être utilisés indépendamment ou combinés. Si la plaque d'adaptateur est placée comme illustré ci-dessous à droite, les deux canaux communiquent et fournissent un débit d'air élevé, bien que les deux canaux doivent être utilisés combinés.

Pour monter la plaque d'adaptateur, simplement déposer les 4 fixations ou obturateurs à vis du préhenseur, placer la plaque d'adaptateur en choisissant l'angle droit en fonction de la configuration souhaitée, puis serrer les 4 vis à 4 Nm.

NOTE:

Veuillez noter que le joint torique dans la plaque d'adaptateur n'est pas collé et peut donc être extrait. Dans ce cas, le remettre simplement en place et le préhenseur fonctionnera comme auparavant.

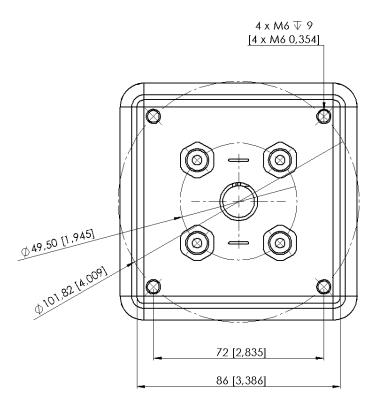
Tuyau d'extension

Le tuyau d'extension offre 50 mm supplémentaires pour atteindre les espaces étroits.

NOTE:

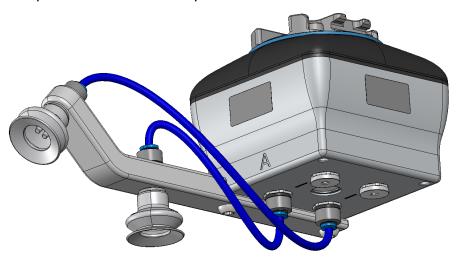
N'oubliez pas d'utiliser la plaque d'adaptateur pivotée de manière à obtenir un débit d'air plus élevé de manière à utiliser les deux canaux ensemble.

Le tuyau d'extension peut être monté dans l'un des trous en le vissant simplement et en ajoutant une fixation au sommet comme illustré ci-dessous.

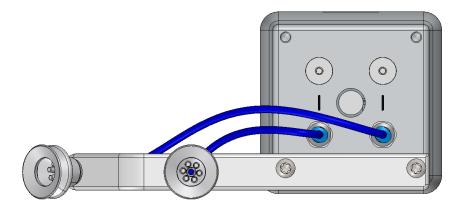

Les différentes configurations de montage avec les fixations sont illustrées.

Plaques d'adaptateur personnalisées et fixations à enfoncer

La conception du VGC10 a pour but de faciliter aux utilisateurs la création des plaques d'adaptateurs pour différents types de configurations. Les dimensions requises pour créer une plaque d'adaptateur personnalisée sont indiquées ci-dessous.



Les fixations à enfoncer permettent de fixer des tubes à vide de 4 mm de manière à personnaliser la configuration nécessitant une dépression à distance. Dans la plupart des cas, cette taille suffit pour générer la dépression requise depuis la pompe dans le préhenseur.



Le nom commercial des fixations à enfoncer est Fitting QSM-G1/8-4-I-R si d'autres unités doivent être achetées.

Exemple de configuration personnalisée : avec une plaque d'adaptateur fabriquée soi-même et la dépression distante est représentée ci-dessous.

L'image ci-dessous illustre comment les fixations à enfoncer et les fixations normales sont mises en communication.

Charge utile

La capacité de levage des préhenseurs VG dépend essentiellement des paramètres suivants :

- Coupes à vide
- Dépression
- Débit d'air

Coupes à vide

Il est essentiel de choisir les bonnes coupes à vide pour votre application. Les préhenseurs VG sont fournis avec des coupes à vide en silicone 15, 30 et 40 mm communes (voir le tableau cidessous) convenant aux surfaces dures et planes, mais pas aux surfaces irrégulières. Elle peuvent laisser de microscopiques traces de silicone sur la pièce de travail pouvant ultérieurement causer des problèmes avec certains types de processus de peinture.

Image	Diamètre extérieur [mm]	Diamètre intérieur [mm]	Surface de préhension [mm2]
Ovobok	15	6	29
(%) reads	30	16	200
(%) rebox	40	24	450

Les coupes à vide OnRobot sont fortement recommandées pour les matériaux non poreux. Certains des matériaux non poreux les plus courants sont listés ci-dessous :

- Composites
- Verre
- Carton haute densité
- Papier haute densité
- Métaux
- Plastique
- Matériaux poreux avec une surface scellée
- Bois vernis

Dans l'idéal, travailler avec des pièces en matériaux non poreux, où il n'y a pas de flux d'air dans la pièce, le tableau ci-dessus présente le nombre de coupes à vide et la taille de ventouse requise en fonction de la charge utile (masse de pièces de travail) et la dépression utilisée.

Nombre de coupes à vide requis pour les matériaux non poreux en fonction de la charge utile et de la dépression :

	15mm					30mm				(G) robot			
				`						40mm			
Payload		/acuur				Vacuum (kPa)				Vacuum (kPa)			
(kg)	20	40	60	75		20	40	60	75	20	40	60	75
0.1	3	2	1	1		1	1	1	1	1	1	1	1
0.5	13	7	5	4		2	1	1	1	1	1	1	1
1	_	13	9	7		4	2	2	1	2	1	1	1
2	-	-	-	14		8	4	3	2	4	2	2	1
3	-	-	-	-]	12	6	4	3	5	3	2	2
4	-	-	-	-]	15	8	5	4	7	4	3	2
5	-	-	-	-		-	10	7	5	9	5	3	3
6	-	-	-	-		-	12	8	6	10	5	4	3
7	-	-	-	-		-	13	9	7	12	6	4	4
8	_	-	-	-		-	15	10	8	14	7	5	4
9	-	-	-	-		-	-	12	9	15	8	5	4
10	-	-	-	-		-	-	13	10	-	9	6	5
11	_	-	-	-		-	-	14	11	-	9	6	5
12	-	-	-	-		-	-	15	12	-	10	7	6
13	-	-	-	-		-	-	16	13	-	11	8	6
14	-	-	-	-		-	-	-	14	-	12	8	7
15	-	-	-	-		-	-	1	15	-	13	9	7

NOTE:

Une plaque d'adaptateur personnalisée est requise pour utiliser plus de 7 (15 mm), 4 (30 mm) ou 3 (40 mm) coupes à vide avec le VGC10.

Le tableau ci-dessus est créé avec la formule suivante équivalant à la force de levage avec la charge utile en tenant compte de 1,5 G d'accélération.

$$Amount_{Cups} * Area_{Cup}[mm] = 14700 \frac{Payload [kg]}{Vacuum [kPa]}$$

Il est souvent judicieux d'utiliser plus de coupes à vide afin de supporter les vibrations, les fuites et d'autres problèmes inattendus. Cependant, plus il y a de coupes à vide, plus on peut prévoir de fuites d'air (débit d'air) et plus le déplacement d'air est important lors d'une préhension, ce qui allonge les temps de préhension.

Lors de l'utilisation de matériaux poreux, la dépression possible en utilisant les coupes à vide OnRobot dépend du matériau lui-même et se situe dans la plage mentionnée dans les spécifications. Certains des matériaux non poreux les plus courants sont listés ci-dessous :

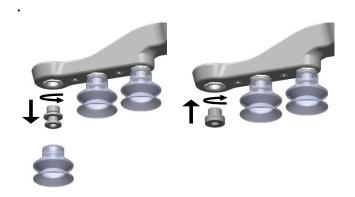
- Tissus
- Mousse
- Mousse à cellules ouvertes

Spécification du matériel

- Carton basse densité
- Papier basse densité
- Matériaux perforés
- Bois non traité

Consultez le tableau de recommandations générales ci-dessous si d'autres coupes à vide sont requises pour des matériaux spécifiques.

Surface de la pièce de travail	Forme de coupe à vide	Matériau de coupe à vide	
Dur et plat	Normal ou double lèvre	Silicone ou NBR	
Sac en plastique doux ou en plastique	Type sac en plastique spécial	Type sac en plastique spécial	
Dur mais courbe ou irrégulier	Double lèvre fine	Silicone ou NBR mou	
À peindre ultérieurement	Tout type	NBR uniquement	
Hauteurs variables	1,5 biseau ou plus	Tout type	


NOTE:

Il est recommandé de consulter un spécialiste des coupes à vide pour trouver la coupe optimale lorsque les types standard sont insuffisants.

Fixations et obturateurs vissés

Il est possible de changer les coupes à vide simplement en tirant dessus pour les retirer des fixations. Il peut être un peu difficile de déposer les coupes à vide de 15 mm de diamètre. Nous proposons d'essayer d'étirer le silicone de l'un des côtés et de le sortir.

Les trous inutilisés peuvent être bouchés par un obturateur vissé, chaque accessoire peut être remplacée par un type différent pour s'adapter à la ventouse désirée. Les fixations et les obturateurs vissés sont fixés ou démontés en les vissant (à 2 Nm) ou en les dévissant avec la clé Allen de 3 mm fournie.

Le filetage couramment utilisé est le G1/8", ce qui permet de monter des fixations, des obturateurs et des extensions standard directement sur les préhenseurs VG.

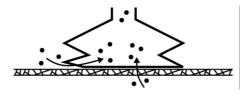
Spécification du matériel

Dépression

Le vide se définit comme le pourcentage de dépression absolue obtenu par rapport à la pression atmosphérique, i.e. :

% de dépression	Ваг	kPa	inHg	Utilisation typique pour	
0 %	0,00 rel. 1,01 abs.	0,00 rel. 101,3 abs.	0,0 геl. 29,9 abs.	Pas de vide / Pas de capacité de levage	
20 %	0,20 геl. 0,81 abs.	20,3 геl. 81,1 abs.	6,0 rel. 23,9 abs.	Carton et plastiques fins	
40 %	0,41 rel. 0,61 abs.	40,5 геl. 60,8 abs.	12,0 геl. 18,0 abs.	Pièces de travail légères et longue durée de vie des ventouses	
60 %	0,61 rel. 0,41 abs.	60,8 геl. 40,5 abs.	18,0 rel. 12,0 abs.	Pièces de travail lourdes et préhensions fortes	
80 %	0,81 rel. 0,20 abs.	81,1 rel. 20,3 abs.	23,9 rel. 6,0 abs.	Dépression max. Pas recommandé	

La dépression en kPa est la dépression cible. La pompe tourne à plein régime jusqu'à atteindre la dépression cible, puis elle ralentit selon les besoins pour maintenir cette dépression.


La pression atmosphérique varie selon la météo, la température et l'altitude. Les préhenseurs VG compensent automatiquement les altitudes jusqu'à 2 km, où la pression est d'environ 80 % celle au niveau de la mer.

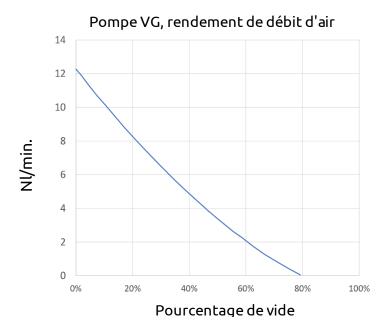
Débit d'air

Le débit d'air est la quantité d'air devant être pompé pour maintenir la dépression cible. Un système complètement étanche ne possède pas de débit d'air, alors que les applications réelles présentent de petites fuites d'air de deux différentes sources :

- Fuite de lèvres de coupes à vide
- Fuite de pièces de travail

La moindre fuite d'une coupe à vide peut être difficile à déceler (voir l'image ci-dessous).

Une fuite de pièces de travail peut être encore plus difficiles à identifier. Ce qui peut paraître totalement étanche peut ne pas l'être du tout. Exemple typique : boîtes en carton brut. La fine couche extérieure demande souvent un débit d'air important pour créer une différence de pression (voir la figure ci-dessous).



Par conséquent, les utilisateurs doivent savoir ce qui suit :

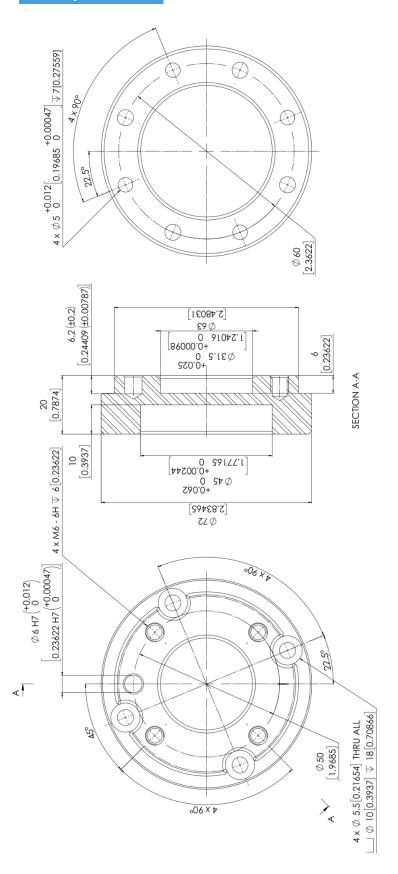
- Les préhenseurs VG ne conviennent pas à la plupart des boîtes en carton brut sans revêtement.
- Il faut faire plus d'attention aux fuites, ex. forme de coupe à vide et rugosité de la surface

La capacité de débit d'air d'un préhenseur VG est illustrée dans le graphique ci-dessous :

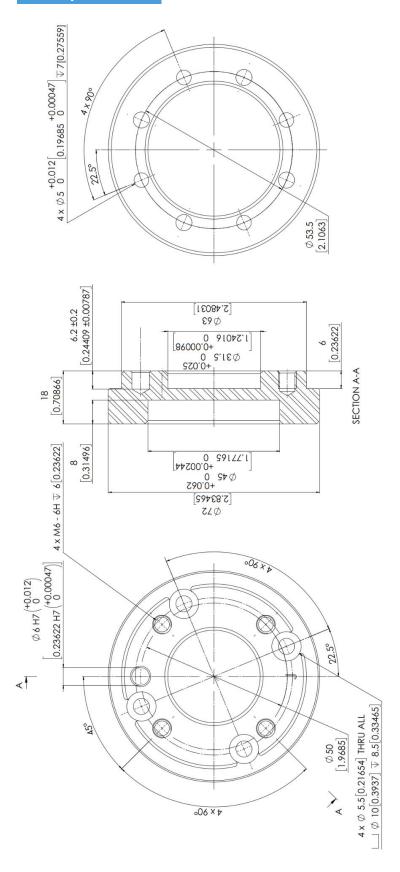
NOTE:

La manière la plus simple de vérifier l'étanchéité d'une boîte en carton consiste à simplement la tester avec des préhenseurs VG.

Un réglage de pourcentage de vide élevé n'offre pas plus de capacité de vide sur un carton ondulé. En fait, un réglage plus bas est recommandé, par ex. 20 %.


Un réglage de vide bas entraîne un débit d'air inférieur et une friction moindre sous les coupes à vide. Cela signifie que les filtres et les coupes à vide d'un préhenseur VG durent plus longtemps.

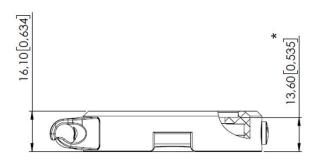
9.2 Schémas mécaniques

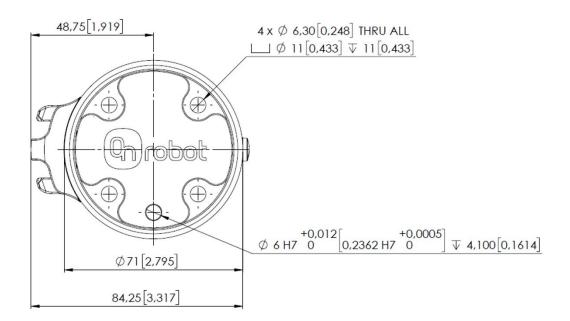

9.2.1 Plaque(s) d'adaptation

Adaptateur I

Adaptateur J

Spécification du matériel



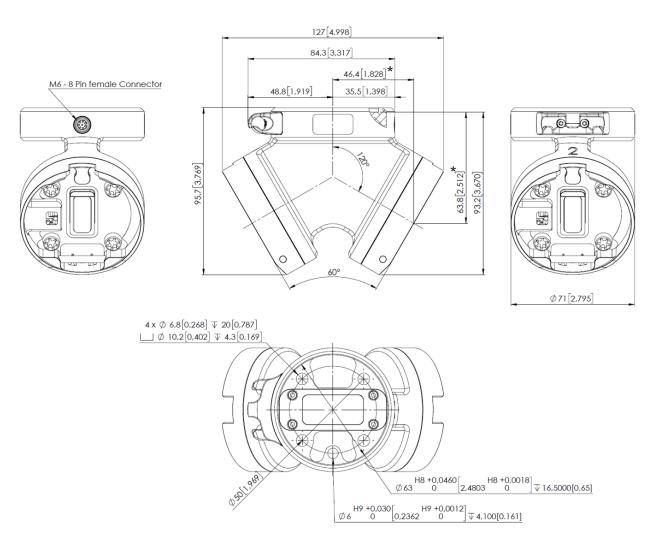

9.2.2 Montages

Quick Changer - Robot side	177
Dual Quick Changer	178
HEX-E/H QC	179

Quick Changer -Côté robot

* Distance entre l'interface de bride du robot et l'outil OnRobot.

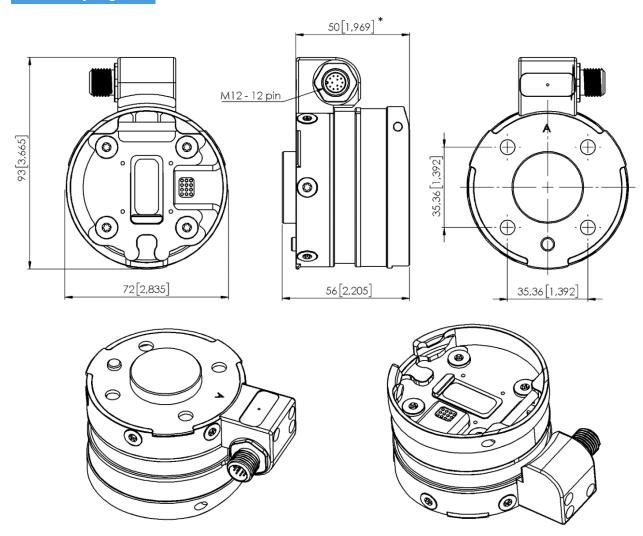
Toutes les dimensions sont exprimées en mm et [pouces].



NOTE:

Le support de câble (sur le côté gauche) n'est requis qu'avec le câble long (5 mètres).

Dual Quick Changer



^{*} Distance entre l'interface de bride du robot et l'outil OnRobot.

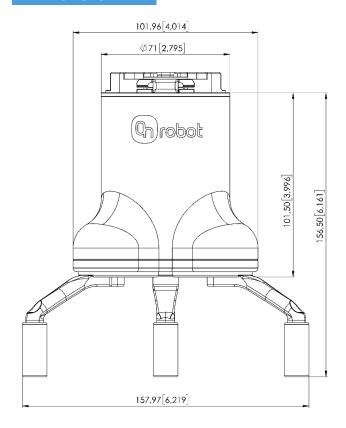
Toutes les dimensions sont exprimées en mm et [pouces].

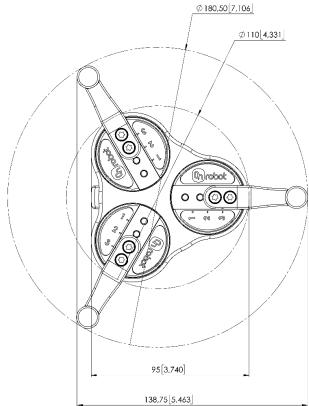
HEX-E/H QC

^{*} Distance entre l'interface de bride du robot et l'outil OnRobot.

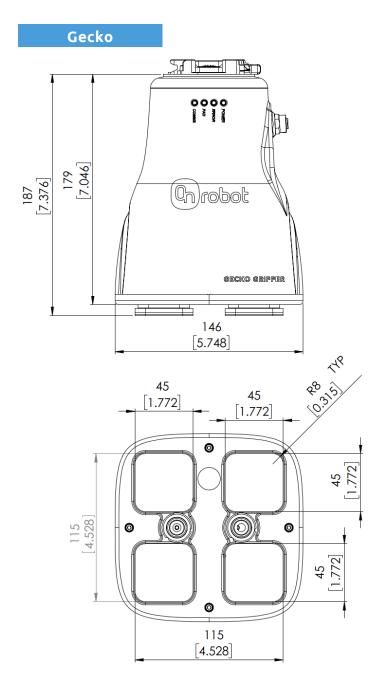
Toutes les dimensions sont exprimées en mm et [pouces].

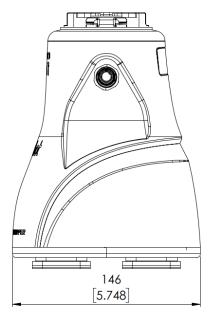
Spécification du matériel



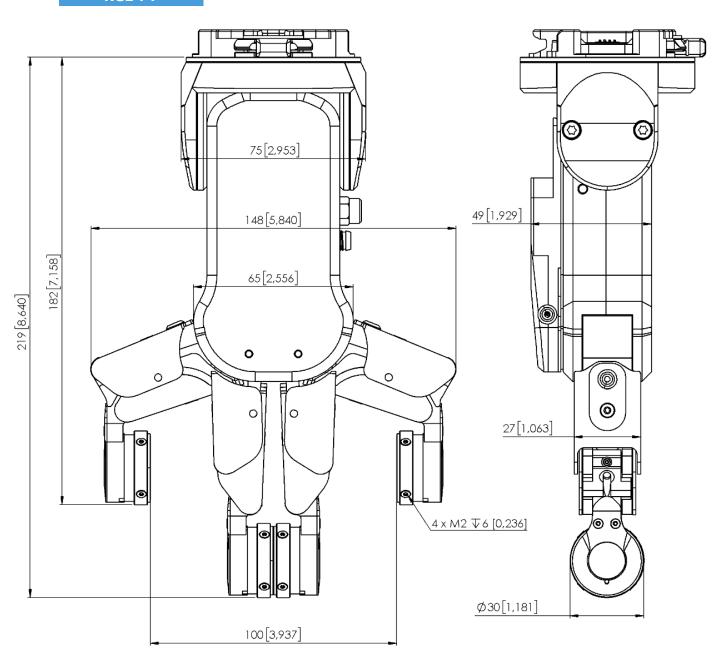

9.2.3 Outils

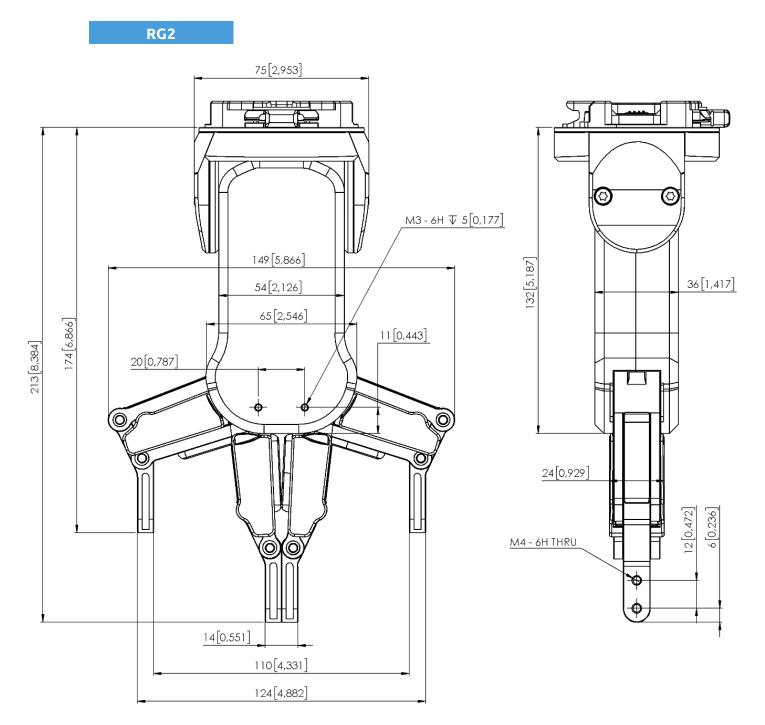
□ 3FG15	181
☐ Gecko	182
□ RG2-FT	183
□ RG2	184
□ RG6	185
□ SG	186
□ VG10	187
□ VGC10	189
Quick Changer - Tool side	e191
Quick Changer - 1000 sid	C 191

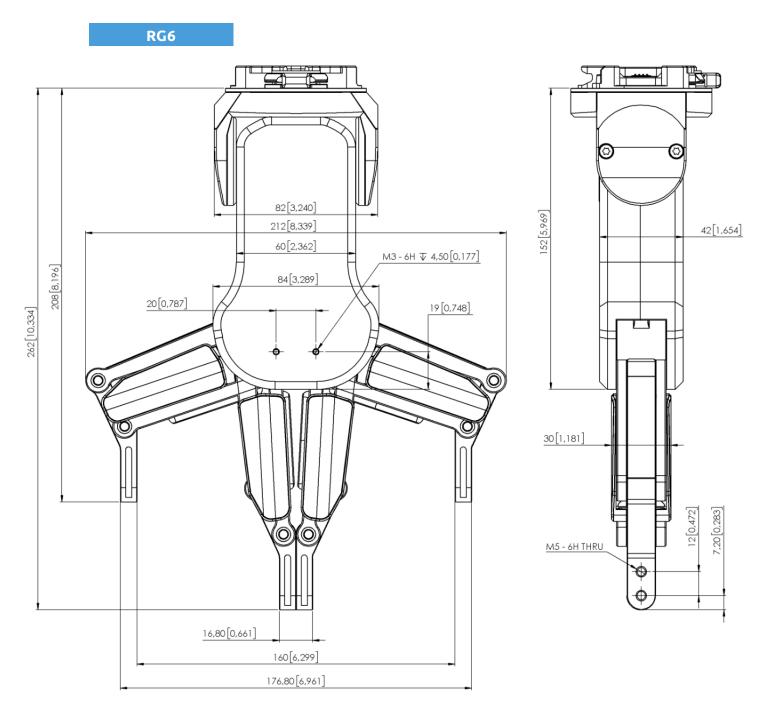

3FG15

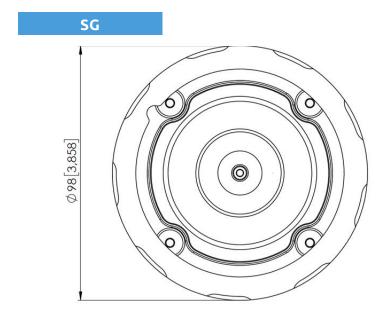


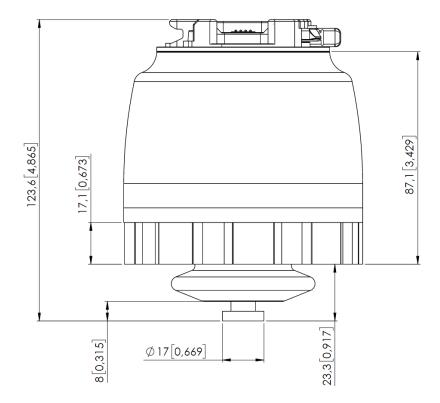
Toutes les dimensions sont exprimées en mm et [pouces].

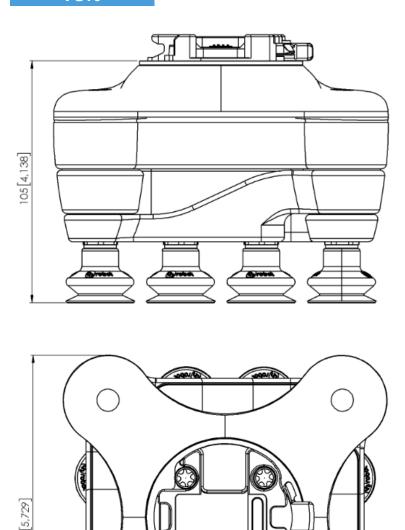


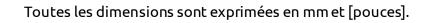

Toutes les dimensions sont exprimées en mm et [pouces].


RG2-FT

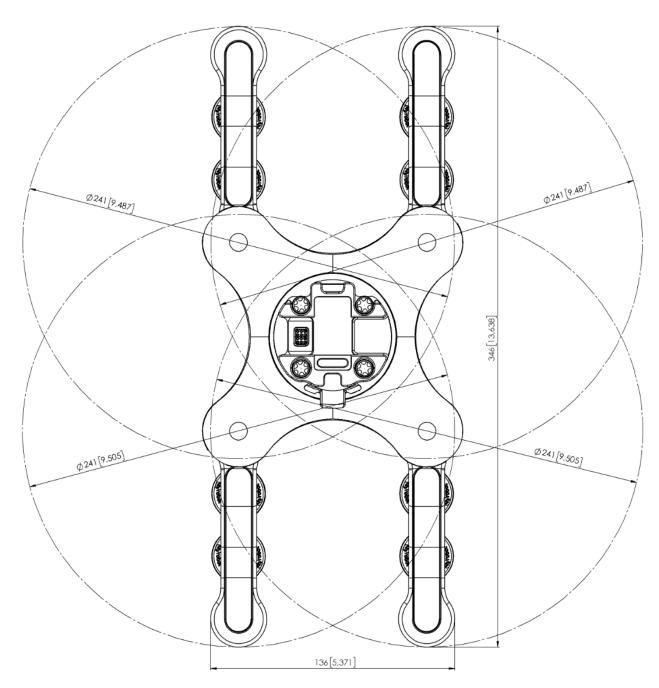




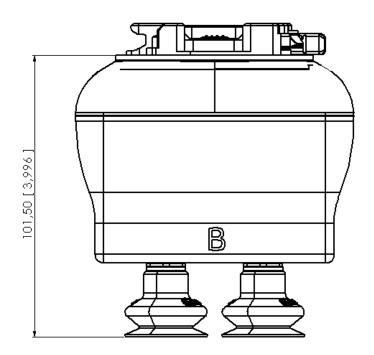


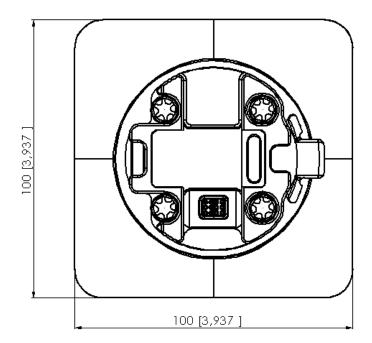


Les pièces d'outil en silicone - fixées sur la pièce de base SG - sont décrites dans la fiche technique SG.

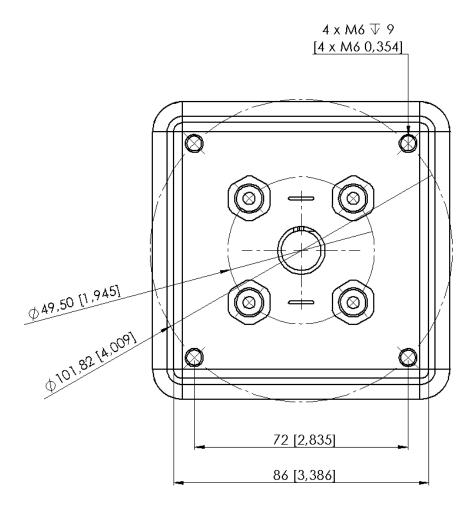

VG10

146 [5,729]

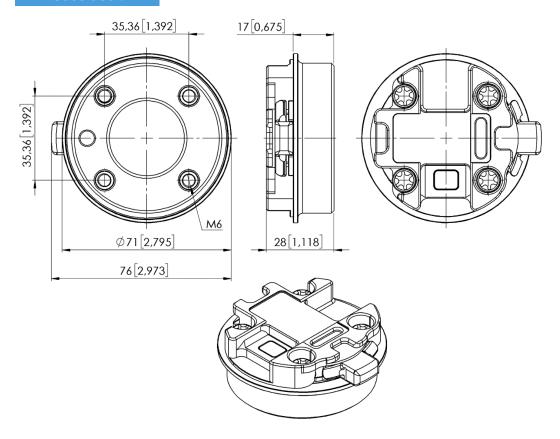




Toutes les dimensions sont exprimées en mm et [pouces].



VGC10



Quick Changer -Côté outil

9.3 Centre de gravité

COG, TCP et paramètres de poids des différents appareils (sans montage/adaptateur) :

3FG15

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
Z Z	X=0 Y=0 Z=156	cX=0 cY= 0 cZ= 83	1,15 kg 2,5 lb

^{*} Avec les doigts fournis et les bouts de doigts en silicone 13.5 en place.

HEX-E/H QC

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
	X=0 Y=0 Z=50	cX=0 cY=5 cZ=20	0,35 kg 0,77 lb

Gecko

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
	X=0 Y=0 Z=187	cX=0 cY=0 cZ=113	2,83 kg 6,10 lb

RG2-FT

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
Z Z	X=0 Y=0 Z=205	cX=0 cY=0 cZ=65	0,98 kg 2,16 lb

^{*} Monté à 0°

RG2

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
	X=0 Y=0 Z=200	cX=0 cY=0 cZ=64	0,78 kg 1,72 lb

^{*} Monté à 0°

RG6

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
Z Z	X=0 Y=0 Z=250	cX=0 cY=0 cZ=90	1,25 kg 2,76 lb

^{*} Monté à 0°

SG

Sans outil en silicone, seule la base SG avec broche insérée.

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
Z Z	X=0 Y=0 Z=113	cX=-13 cY=-5 cZ=31	0,77 kg 1,69 lb

Avec outil silicone de type A installé (SG-a-S/H).

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
	X=0 Y=0 Z=154	cX=-12 cY=-5 cZ=45	0,932 kg 2,05 lb

Avec outil silicone de type B installé (SG-b-S/H).

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
2	X=0 Y=0 Z=155	cX=-12 cY=-5 cZ=46	0,937 kg 2,06 lb

VG10

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
	X=0 Y=0 Z=105	cX=15 cY=0 cZ=54	1,62 kg 3,57 lb

^{*} Avec les bras repliés

VGC10

Système de coordonnées	TCP [mm]	Centre de gravité [mm]	Poids
Z Z	X=0 Y=0 Z=75	cX=-1 cY=-1 cZ=37	0,814 kg 1,79 lb

^{*} Sans fixations

10 Maintenance

AVERTISSEMENT:

Une inspection générale de l'outillage robotique OnRobot doit être effectuée régulièrement et au moins une fois tous les 6 mois. Cette inspection doit inclure, mais sans s'y limiter, la vérification du matériau pour détecter s'il est défectueux et le nettoyage des surfaces de préhension.

Utilisez des pièces de rechange originales et les instructions originales d'entretien pour les outils d'extrémité de bras OnRobot et le robot. Le non-respect de cette précaution peut entraîner des risques inattendus et des blessures graves.

Pour toute question concernant les pièces de rechange et la réparation, veuillez visiter notre site Web www.onrobot.com pour nous contacter.

195
196
198
198
198
198

3FG15

AVERTISSEMENT:

Veuillez vérifier régulièrement les bouts de doigts en silicone car ces pièces peuvent s'user.

Si le bout de doigt est usé, il peut être commandé comme pièce de rechange :

- Ø10 mm en acier, réf. 104160
- Ø13 mm en acier, réf. 104241
- Ø13,5 mm en silicone, réf. 104162
- Ø16,5 mm en silicone, réf. 104240

Gecko

Les coussinets du Gecko Gripper sont fabriqués à partir d'un silicone coulé de précision ou d'un film de polyuréthane avec une microstructure du Gecko. Le contact avec des objets tranchants peut endommager la surface du coussinet et altérer son fonctionnement. La performance du Gecko Gripper est optimale lorsque les coussinets sont propres et secs. Les coussinets peuvent accumuler de la poussière, il est donc préférable d'utiliser le préhenseur Gecko dans un environnement propre et/ou d'établir un programme de nettoyage de routine.

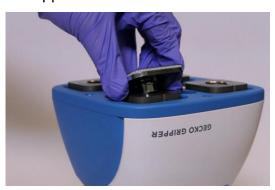
Pièce	Description de la maintenance	Fréquence
Nettoyage des coussinets	Nettoyage de routine : Station de nettoyage	En fonction des conditions de fonctionnement. Les directives sont:
		Consultez le Guide d'utilisation de la station de nettoyage
Usure des coussinets	Remplacement en raison de l'usure	150 000 – 200 000 pour une opération de précharge ÉLEVÉE
		200 000 – 250 000 pour une opération de précharge BASSE

Remplacement des coussinets du préhenseur

Les coussinets du Gecko Gripper sont conçus pour durer 200 000 à 300 000 cycles dans des conditions normales de fonctionnement. Si les coussinets ne semblent pas bien saisir, malgré un nettoyage de routine (voir le tableau à la page précédente), nous vous recommandons de remplacer entièrement les coussinets du préhenseur.

Pour ce faire, utilisez l'outil de démontage des coussinets fourni.

Étape 1 : Déplacez les coussinets du préhenseur à la position extrudée maximale de sorte que les coussinets soient exposées/visibles au maximum.



Étape 2: Insérez le bord de l'outil de démontage des coussinets entre la plaque argentée brillante des coussinets et la plaque de support terne. Appuyez l'outil de démontage des coussinets contre le boîtier du préhenseur pour soulever le coussinet usé. Répétez l'opération pour tous les coussinets.

Étape 3: Pour installer de nouveaux coussinets de rechange, alignez l'encoche du coussinet avec la languette dans le trou de montage. Poussez le coussinet dans le préhenseur jusqu'à ce qu'il n'y ait plus d'espace entre la plaque argentée brillante du coussinet et la plaque de support.

RG2/6

AVERTISSEMENT:

Une inspection générale des boutons de sécurité PLd CAT3 doit être effectuée régulièrement et au moins une fois tous les 6 mois.

RG2-FT

AVERTISSEMENT:

Veuillez nettoyer régulièrement la surface du capteur de proximité à l'air comprimé basse pression (<5 bars) à 5 cm de distance. Contre une forte contamination, utilisez de l'alcool isopropyle avec un coton-tige doux pour le garder propre.

SG

Pour la pièce de base SG

AVERTISSEMENT:

Veuillez nettoyer régulièrement l'embase SG à l'aide d'un chiffon et d'un agent nettoyant d'un pH compris entre 6 et 8.

Lorsque vous nettoyez l'embase SG, laissez-la montée sur le robot pour que de l'eau ne pénètre pas dans le connecteur.

Après le nettoyage, utilisez un chiffon et de l'eau propre pour rincer tout résidu d'agent de nettoyage.

Assurez-vous que votre agent nettoyant ne contient pas de chlore car il peut provoquer de la corrosion.

AVERTISSEMENT:

Vérifiez régulièrement que le soufflet en silicone ne se détache pas de la base en aluminium ni de la partie mâle du verrou intelligent. Si le soufflet est mal fixé, de l'eau peut s'immiscer dans l'embase SG.

Pour les outils SG:

La partie en silicone et la partie femelle du verrou intelligent passent au lave-vaisselle, à des températures =< 80 °C (176 °F).

Différents agents nettoyants peuvent être utilisés pour nettoyer la partie en silicone. Liquide-vaisselle. L'alcool, l'éthanol ordinaire, l'isopropanol et l'acétone sont également efficaces pour le nettoyage.

N'utilisez pas d'acides et d'alcalis concentrés, car ils peuvent potentiellement endommager le silicone, en particulier les acides oxydants tels que l'acide sulfurique ou nitrique. Il est recommandé d'utiliser un agent de nettoyage dont le pH est compris entre 2 et 13.

Veuillez procéder régulièrement à une inspection visuelle de la partie femelle du verrou intelligent et du ressort à boule. Si nécessaire, nettoyez-la avec une brosse ou un chiffon.

NOTE:

Au cours du nettoyage, assurez-vous que la partie femelle du verrou intelligent est retournée afin d'éviter que de l'eau ne soit emprisonnée dans le ressort à boule.

VG10 / VGC10

Les préhenseurs VG sont dotés d'un filtre pour chaque douille de coupe à vide et un filtre pour l'échappement. La fréquence de changement des filtres dépend de la nature de la pièce et de l'environnement de travail. Les préhenseurs VG dépoussièrent automatiquement les filtres à chaque préhension. Cependant, des particules peuvent se coincer et s'accumuler dans le filtre, ce qui amoindrit les performances des préhenseurs VG.

Il est proposé un kit d'entretien de filtres incluant les deux types de filtres neufs et les outils requis.

- Kit d'entretien de filtre pour VG10, réf. 100064
- Kit d'entretien de filtre pour VGC10, réf. 103757

N'utilisez jamais et n'activez jamais les préhenseurs VG sans filtres. De la poussière, des cheveux et de grosses particules peuvent se coincer dans les membranes de la pompe et les sièges de soupape, ce qui cause des dégâts permanents sur les préhenseurs VG.

DANGER:

Identifiez à quelle fréquence vous devez entretenir les filtres et effectuer la maintenance selon une périodicité assez courte pour garantir une préhension ferme en permanence.

Une inspection générale des préhenseurs VG doit être effectuée régulièrement et au moins une fois tous les 6 mois.

Ne mettez jamais les préhenseurs VG sous tension sans filtres ou avec des filtres mal montés. Le non-respect de cette précaution peut causer des dégâts irréversibles sur la pompe ou les soupapes.

11 Garanties

11.1 Brevets

Les produits d'OnRobot A/S sont protégés par plusieurs brevets dont certains sont encore en cours de publication mondiale (brevets en instance). Tous les fabricants de copies et de produits similaires violant toute revendication de brevet seront poursuivis en justice.

11.2 Garantie du produit

Sans préjudice de toute réclamation que l'utilisateur (client) peut avoir à l'égard du revendeur ou du détaillant, le client bénéficiera d'une garantie du fabricant dans les conditions énoncées ci-dessous:

Dans le cas d'appareils neufs et de leurs composants présentant des défauts de fabrication et/ou de matériaux dans les 12 mois suivant la mise en service (maximum 15 mois à compter de l'expédition), OnRobot A/S fournira les pièces de rechange nécessaires, tandis que le client (utilisateur) indiquera les heures de travail qui lui conviennent pour le remplacement desdites pièces, soit en remplaçant la pièce par une autre pièce correspondant à l'état actuel, ou en réparant ladite pièce. Cette garantie n'est pas valable si le défaut de l'appareil est dû à une mauvaise utilisation et/ou au non-respect des informations contenues dans les manuels d'utilisation. Cette garantie ne s'applique pas aux services effectués par le revendeur agréé ou le client lui-même (par ex. installation, configuration, téléchargement de logiciels). Le recu d'achat, ainsi que la date d'achat, seront exigés comme preuve pour faire appel à la garantie. Les réclamations au titre de la garantie doivent être soumises dans les deux mois suivant la date de constatation du défaut de garantie. La propriété des appareils ou composants remplacés et retournés à OnRobot A/S sera transférée à OnRobot A/S. Toute autre réclamation résultant de l'utilisation de l'appareil ou en relation avec celui-ci sera exclue de cette garantie. Aucune disposition dans la présente garantie ne doit tenter de limiter ou d'exclure les droits légaux d'un client ou la responsabilité du fabricant en cas de décès ou de blessures corporelles résultant de sa négligence. La durée de la garantie ne sera pas prolongée par les services rendus dans le cadre de la garantie. Dans la mesure où il n'existe aucun défaut de garantie, OnRobot A/S se réserve le droit de facturer au client le remplacement ou la réparation. Les dispositions ci-dessus n'impliquent en aucun cas une modification de la charge de la preuve au détriment du client. Dans le cas d'un appareil présentant des défauts, OnRobot A/S ne sera pas responsable des dommages indirects, accessoires, spéciaux ou consécutifs, y compris, mais sans s'y limiter: le manque à gagner, la perte d'utilisation, la perte de production ou des dommages à d'autres équipements de production.

Dans le cas d'un appareil présentant des défauts, OnRobot A/S ne couvrira pas les dommages ou pertes consécutifs, tels que la perte de production ou les dommages à d'autres équipements de production.

11.3 Avis de non responsabilité

OnRobot A/S continue d'améliorer la fiabilité et les performances de ses produits, et se réserve donc le droit de mettre à jour le produit sans avertissement préalable. OnRobot A/S s'assure que le contenu de ce manuel soit précis et correct, mais n'assume aucune responsabilité pour toute erreur ou information manquante.

Garanties

12 Certifications

ZERTIFIKAT CERTIFICATE

Hiermit wird bescheinigt, dass die Firma / This certifies that the company

OnRobot A/S Teglværksvej 47H 5220 Odense SØ Denmark

berechtigt ist, das unten genannte Produkt mit dem abgebildeten Zeichen zu kennzeichnen is authorized to provide the product mentioned below with the mark as illustrated

Fertigungsstätte: OnRobot A/S

Manufacturing plant: Teglværksvej 47H
5220 Odense SØ
Denmark

Beschreibung des Produktes: (Details s. Anlage 1) Description of product:

(Details see Annex 1)

Safety Gripper for collaborative robots

RG2 v2 and RG6 v2

Geprüft nach: EN ISO 13849-1:2015 Cat. 3, PL ,d'

Tested in accordance with:

Registrier-Nr. / Registered No. 44 780 18106002 Prüfbericht Nr. / Test Report No. 3523 2689 Aktenzeichen / Fille reference 8000489144 Gültigkeit / Validity von / from 2019-06-04 bis / until 2024-06-03

Zertifizerungsstelle der Essen, 2019-06-04
TÜV NORD CERT GmbH

TÜV NORD CERT GmbH Langemarckstraße 20 45141 Essen www.tuev-nord-cert.de technology@tuev-nord.de

Bitte beachten Sie auch die umseitigen Hinweise Please also pay attention to the information stated overleaf

CERTIFICATEOF REGISTRATION

This is to certify that the management system of:

OnRobot A/S

Main Site: Teglværksvej 47 H, 5220 Odense SØ, Denmark

Chamber of Commerce: 36492449

Additional Site: OnRobot A/S, Cikorievej 44, 5220 Odense SØ, Denmark

has been registered by Intertek as conforming to the requirements of

ISO 9001:2015

The management system is applicable to:

Development and sales of End-of-Arms tools for industrial customers worldwide.

Certificate Number:

0096721

Initial Certification Date:

26 November 2019

Date of Certification Decision:

26 November 2019

Issuing Date:

26 November 2019

Valid Until:

25 November 2022

Accred. no. 1639
Certification of
Management
Systems
ISO/IEC 17021-1

Intertek

Carl-Johan von Plomgren MD, Business Assurance Nordics

Intertek Certification AB P.O. Box 1103, SE-164 22 Kista, Sweden

In the issuance of this certificate, Intertek assumes no liability to any party other than to the Client, and then only in accordance with the agreed upon Certification Agreement. This certificate's validity is subject to the organization maintaining their system in accordance with Intertek's requirements for systems certification. Validity may be confirmed via email at certificate.validation@intertek.com or by scanning the code to the right with a smartphone.

The certificate remains the property of Intertek, to whom it must be returned upon request.

Report Number: **B91115V1**EN 61000-6-2 and EN 55011 Test Report *Gecko Gripper Model: GEN2*

GENERAL REPORT SUMMARY

This electromagnetic emission and immunity test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government.

Device Tested: Gecko Gripper

Model: GEN2 S/N: RAPUNZEL

Product Description: The equipment under test is a robotic attachment that makes it possible to lift flat, smooth,

and level surfaces.

Modifications: The EUT was not modified in order to comply with specifications.

Customer: OnRobot Los Angeles

8928 Ellis Avenue

Los Angeles, California 90034

Test Dates: October 4; November 12, 13, 14 and 15, 2019

Test Specifications covered by Accreditation:

Emissions and Immunity Requirements European Standards:

EN 61000-6-2 (2005), EN 55011 (2016) + A1 (2017); IEC 61000-3-2 (2014); and IEC 61000-3-3 (2013)

EN 61000-6-2 (2005) is a product family immunity standard that references the following specifications:

EN 61000-4-2 (2009)

EN 61000-4-3 (2006) + A1 (2008) + A2: 2010

EN 61000-4-4 (2004) + A1 (2010)

EN 61000-4-5 (2006)

EN 61000-4-6 (2009)

EN 61000-4-8 (2009)

EN 61000-4-11 (2004)

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Attestation of Conformity no. 119-29901-A1

FORCE Technology has performed compliance testing on electrical products since 1967. FORCE Technology is an accredited test house according to EN17025 and participates in international standardization with organizations such as CEN/CENELEC, IEC/CISPR and ETSI. This attestation of conformity with the below mentioned standards and/or normative documents is based on accredited tests and/or technical assessments carried out at FORCE Technology.

Attestation holder

OnRobot A/S Teglværksvej 47H 5220 Odense SØ Denmark.

Product identification

Compute box with Power Supply Unit (PSU) VER36U240-JA.

Mountings: HEX-E QC V3 (101904), QC – R v2 (102037), Dual QC v2 (101788).

Tools: VG10 v2 (101661), RG2 v2 (102012), RG2-FT v2 (102075), RG6 v2 (102021).

Manufacturer

On Robot A/S

Technical documentation

Assessment no. 119-29901-A1

Standards list no. 1:

IEC 61000-3-2:2014 EMC Directive 2014/30/EU, Article 6
IEC 61000-3-3:2013 EN 61000-3-2:2014
IEC 61000-6-2:2016 EN 61000-3-3:2013
IEC 61000-6-4:2018 EN 61000-6-2:2005
EN 61000-6-2:2019
EN 61000-6-4:2007 + A1:2011

Standard list no. 2: (applicable specifically to RG2 v2 (102012) and RG6 v2 (102021))

IEC 61326-3-1:2017, Industry locations, SIL 2

The product identified above has been assessed and complies with the specified standards/normative documents. The attestation does not include any market surveillance. It is the responsibility of the manufacturer that mass-produced apparatus have the same properties and quality. This attestation does not contain any statements pertaining to the requirements pursuant to other standards, directives or laws other than the above mentioned.

Signature

Knud A. Baltsen Digitally signed by Knud A. Baltsen Date: 2019.11.15 19:38:04 +01'00'

Attestation of Conformity no. 118-33022-A1

FORCE Technology has performed compliance testing on electrical products since 1967. FORCE Technology is an accredited test house according to EN17025 and participates in international standardization with organizations such as CEN/CENELEC, IEC/CISPR and ETSI. This attestation of conformity with the below mentioned standards and/or normative documents is based on accredited tests and/or technical assessments carried out at FORCE Technology.

Attestation holder

OnRobot A/S Teglværksvej 47H 5220 Odense SØ Denmark

Product identification

Gripper RG2 2.0

Manufacturer

OnRobot A/S

Technical documentation

FORCE Technology Test Report 117-29737, dated 01 September 2017 FORCE Technology Assessment Sheet 1668, dated 17 October 2017 FORCE Technology Test Report 118-33022-2 Rev. 1, dated 06 February 2019 FORCE Technology Assessment 118-33022-A1, dated 21 February 2019

Standards/Normative documents

IEC 61000-6-2:2005
IEC 61000-6-4:2006 + A1:2010
IEC 61326-3-1:2017, Industrial locations, SIL 2
FCC Part 15B, Class A

EMC Directive 2014/30/EU, Article 6 EN 61000-6-2:2005 + AC:2005 EN 61000-6-4:2007 + A1:2011 EN 61326-3-1:2017, Industrial locations, SIL 2

The product identified above has been assessed and complies with the specified standards/normative documents. The attestation does not include any market surveillance. It is the responsibility of the manufacturer that mass-produced apparatus have the same properties and quality. This attestation does not contain any statements pertaining to the requirements pursuant to other standards, directives or laws other than the above mentioned.

Signature

Knud A. Baltsen

2019-02-21

Digitally signed by Knud A. Baltsen kab@force.dk Senior Specialist

Attestation of Conformity no. 118-33022-A2

FORCE Technology has performed compliance testing on electrical products since 1967. FORCE Technology is an accredited test house according to EN17025 and participates in international standardization with organizations such as CEN/CENELEC, IEC/CISPR and ETSI. This attestation of conformity with the below mentioned standards and/or normative documents is based on accredited tests and/or technical assessments carried out at FORCE Technology.

Attestation holder

OnRobot A/S Teglværksvej 47H 5220 Odense SØ Denmark

Product identification

Gripper RG6 2.0

Manufacturer

OnRobot A/S

Technical documentation

FORCE Technology Test Report 117-29737, dated 01 September 2017 FORCE Technology Assessment Sheet 1668, dated 17 October 2017 FORCE Technology Test Report 118-33022-2 Rev. 1, dated 06 February 2019 FORCE Technology Assessment 118-33022-A1, dated 21 February 2019

Standards/Normative documents

IEC 61000-6-2:2005 IEC 61000-6-4:2006 + A1:2010 IEC 61326-3-1:2017, Industrial locations, SIL 2 FCC Part 15B, Class A EMC Directive 2014/30/EU, Article 6 EN 61000-6-2:2005 + AC:2005 EN 61000-6-4:2007 + A1:2011 EN 61326-3-1:2017, Industrial locations, SIL 2

The product identified above has been assessed and complies with the specified standards/normative documents. The attestation does not include any market surveillance. It is the responsibility of the manufacturer that mass-produced apparatus have the same properties and quality. This attestation does not contain any statements pertaining to the requirements pursuant to other standards, directives or laws other than the above mentioned.

Signature

Knud A. Baltsen

2019-02-21

Digitally signed by Knud A. Baltsen kab@force.dk Senior Specialist

Attestation of Conformity no. 119-31690-A1

FORCE Technology has performed compliance testing on electrical products since 1967. FORCE Technology is an accredited test house according to EN17025 and participates in international standardization with organizations such as CEN/CENELEC, IEC/CISPR and ETSI. This attestation of conformity with the below mentioned standards and/or normative documents is based on accredited tests and/or technical assessments carried out at FORCE Technology.

Attestation holder

OnRobot A/S Teglværksvej 47H 5220 Odense SØ DENMARK

Product identification

Compute box with Power Supply Unit (PSU) VER36U240-JA.

Mounting: Quick Changer HEX-E QC V3 (101904).

Robot Tool: Soft Gripper (103546).

Manufacturer

OnRobot A/S

Technical documentation

Test report. 119-31690-1

Standards/Normative documents

IEC 61000-3-2:2014 EMC Directive 2014/30/EU, Article 6 IEC 61000-3-3:2013 EN 61000-3-2:2014

 IEC 61000 5 3:2015
 EN 61000 5 2:2014

 IEC 61000-6-2:2016
 EN 61000-3-3:2013

 IEC 61000-6-4:2018
 EN 61000-6₁2:2005

 EN 61000-6-2:2019

EN 61000-6-4:2007 + A1:2011

The product identified above has been assessed and complies with the specified standards/normative documents. The attestation does not include any market surveillance. It is the responsibility of the manufacturer that mass-produced apparatus have the same properties and quality. This attestation does not contain any statements pertaining to the requirements pursuant to other standards, directives or laws other than the above mentioned.

Signature

Johan Weisbjerg

Digitally signed by Johan Weisbjerg jow@force.dk

Signed by: Johan Weisbjerg, Specialist, Product Compliance

Attestation of Conformity no. 120-21521-A1

FORCE Technology has performed compliance testing on electrical products since 1967. FORCE Technology is an accredited test house according to EN17025 and participates in international standardization with organizations such as CEN/CENELEC, IEC/CISPR and ETSI. This attestation of conformity with the below mentioned standards and/or normative documents is based on accredited tests and/or technical assessments carried out at FORCE Technology.

Attestation holder

OnRobot A/S Teglværksvej 47H 5220 Odense SØ Denmark

Product identification

Robot tool: Three finger gripping tool 3FG15 (103666).

Manufacturer

OnRobot A/S

Technical documentation

FORCE Technology test report 120-21521-1.

Standards/Normative documents

IEC 61000-3-2:2014 IEC 61000-3-3:2013 IEC 61000-6-2:2016

IEC 61000-6-4:2006/AMD1:2010

EMC Directive 2014/30/EU, Article 6

EN 61000-3-2:2014 EN 61000-3-3:2013

EN 61000-6-2:2005/Corr.:2005 EN 61000-6-4:2007/A1:2011

The product identified above has been assessed and complies with the specified standards/normative documents. The attestation does not include any market surveillance. It is the responsibility of the manufacturer that mass-produced apparatus have the same properties and quality. This attestation does not contain any statements pertaining to the requirements pursuant to other standards, directives or laws other than the above mentioned.

Signature

Knud A. Baltsen Digitally signed by Knud A. Baltsen Date: 2020.03.30 19:48:21 +02'00'

SG-x-H

DECLARATION OF CONFORMITY

According to Regulation (EC/EU) No.1935/2004 Article 3, it is required that food contact articles "must be sufficient inert to preclude substances from being transferred to food in quantities large enough to endanger human health or to bring about an unacceptable change in the composition of the food or a deterioration in its organoleptic properties".

This document stands to certify that all OnRobot SG-x-H materials, intended for food contact complies with:

1. Europe:

Regulation (EC/EU) No. 1935/2004 and national provisions (Article 6). The materials of SG Tools are suitable for food contact, materials and articles under article 3 of the before mentioned egulation. Compliance with the, requirements of Regulation (EC/EU) No.1935/2004 for the food contact material or article, concerning any limitations in particular max. use limits or limits on migration or extraction, the effect on taste and smell of the food and the suitability of the article for the specific use must be in compliance with the recommendations of the BfR.

See results next page.

2. USA:

FDA 21 CFR 177.2600 "Rubber articles intended for repeated use in contact with food".

Tested and approved for use on non-fatty food objects.

See results next page.

The above product is also produced according to EC regulation 2023/2006 "Good manufacturing practice for materials and articles intended to come into contact with food" and is subject to control by the Danish food and health authorities.

To the best knowledge of the manufacturer, that the information presented in this certificate, is correct as of date of the declaration. It is the responsibility of the end-user to ensure that the status of the regulation is still in effect at the date of use.

Odense, April 6th, 2020

Group Management

Bested Volums

os Beskid

210

Results

The materials and color additive have been tested for extraction and migration limits by an independent testing organization (Eurofins Product Testing A/S. Accreditation number 522)

Sensory Analysis:

Parameter:	Food Simulant:	Median Grade:	Limit Value*
Odour	Water	1.5	2.5
		(Just recognizable to slight deviation, chemical)	
Taste	Water	2.5 (Slight to intense deviation, chemical and flavoured)	2.5

^{*} From 61. Statement of BfR, Bundesgesundheitsbl. 46, 2003, 362-5.

Analysis - BfR recommendation XV on silicone:

Parameter:	Result:	Limit value **
Extractable components in water	< 0.2 %	0.5 %
Extractable components in 3% acetic acid	< 0.3 %	0.5 %
Extractable components in 10% ethanol	< 0.2 %	0.5 %
Volatile Compounds	< 0.1 %	0.5 %
Platinum	5 mg/kg	50 mg/kg

^{**} According to BfR recommendation XV on silicone

Extraction Analysis:

Parameter:	Single [mg/inch²]	determinations	Limit Value[mg/inch²]
Water-extracted residue after 7 hours	0.19		< 20
Water-extracted residue after +2 hours	< 0.1		<1

SG-x-S

DECLARATION OF CONFORMITY

According to Regulation (EC/EU) No.1935/2004 Article 3, it is required that food contact articles "must be sufficient inert to preclude substances from being transferred to food in quantities large enough to endanger human health or to bring about an unacceptable change in the composition of the food or a deterioration in its organoleptic properties".

This document stands to certify that all OnRobot SG-x-S materials, intended for food contact complies with:

1. Europe:

Regulation (EC/EU) No. 1935/2004 and national provisions (Article 6). The materials of SG Tools are suitable for food contact, materials and articles under article 3 of the before mentioned egulation. Compliance with the, requirements of Regulation (EC/EU) No.1935/2004 for the food contact material or article, concerning any limitations in particular max. use limits or limits on migration or extraction, the effect on taste and smell of the food and the suitability of the article for the specific use must be in compliance with the recommendations of the BfR.

See results next page.

2. USA:

FDA 21 CFR 177.2600 "Rubber articles intended for repeated use in contact with food".

Tested and approved for use on non-fatty food objects.

See results next page.

The above product is also produced according to EC regulation 2023/2006 "Good manufacturing practice for materials and articles intended to come into contact with food" and is subject to control by the Danish food and health authorities.

To the best knowledge of the manufacturer, that the information presented in this certificate, is correct as of date of the declaration. It is the responsibility of the end-user to ensure that the status of the regulation is still in effect at the date of use.

Odense, April 6th, 2020

Group Management

Bested Volums

Beskid

Results

The materials and color additive have been tested for extraction and migration limits by an independent testing organization (Eurofins Product Testing A/S. Accreditation number 522)

For the Hard part

Sensory Analysis:

Parameter:	Food Simulant:	Median Grade:	Limit Value*
Odour	Water	1.5	2.5
		(Just recognizable to slight deviation, chemical)	
Taste	Water	2.5 (Slight to intense deviation, chemical and flavoured)	2.5

^{*} From 61. Statement of BfR, Bundesgesundheitsbl. 46, 2003, 362-5.

Analysis - BfR recommendation XV on silicone:

Parameter:	Result:	Limit value **
Extractable components in water	< 0.2 %	0.5 %
Extractable components in 3% acetic acid	< 0.3 %	0.5 %
Extractable components in 10% ethanol	< 0.2 %	0.5 %
Volatile Compounds	< 0.1 %	0.5 %
Platinum	5 mg/kg	50 mg/kg

^{**} According to BfR recommendation XV on silicone

Extraction Analysis:

Parameter:	Single [mg/inch²]	determinations	Limit Value[mg/inch²]
Water-extracted residue after 7 hours	0.19		< 20
Water-extracted residue after +2 hours	< 0.1		< 1

For the Soft part

Sensory Analysis:

Parameter:	Food Simulant:	Median Grade:	Limit Value*
Odour	Water	1	2.5
		(Just noticable deviation)	
Taste	Water	1	2.5
		(Just noticable deviation)	

^{*} From 61. Statement of BfR, Bundesgesundheitsbl. 46, 2003, 362-5.

Analysis - BfR recommendation XV on silicone:

Parameter:	Result:	Limit value **
Extractable components in water	< 0.2 %	0.5 %
Extractable components in 3% acetic acid	< 0.3 %	0.5 %
Extractable components in 10% ethanol	< 0.2 %	0.5 %
Volatile Compounds	< 0.1 %	0.5 %
Platinum	10 mg/kg	50 mg/kg

^{**} According to BfR recommendation XV on silicone

Extraction Analysis:

Parameter:	Single [mg/inch²]	determinations	Limit Value[mg/inch²]
Water-extracted residue after 7 hours	1.5		< 20
Water-extracted residue after +2 hours	< 0.1		<1

12.1 Déclaration d'incorporation

□ 3FG15	216
□ Gecko	217
□ HEX-E	218
□ HEX-H	219
□ RG2-FT	220
□ RG2	221
□ RG6	222
□ SG	223
□ VG10	224
□ VGC10	225

3FG15

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Robot Gripper

Model: 3FG15 Generation: V1

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD) 2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, February 14th, 2020

Group Management

Vilmos Beskid

Gecko

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Robot Gripper

Model: Gecko Gripper

Generation: V2

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD) 2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, December 16th, 2019

Group Management

Vilmos Beskid

HEX-E

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Force/Torque Sensor

Model: HEX-E QC

Generation: V3

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD)
2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, December 16th, 2019

Group Management

Vilmos Beskid

HEX-H

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Force/Torque Sensor

Model: HEX-H QC

Generation: V3

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD) 2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, December 16th, 2019

Group Management

Vilmos Beskid

RG2-FT

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Robot Gripper

Model: RG2-FT Generation: V2

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD)
2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, December 16th, 2019

Group Management

Vilmos Beskid

RG2

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Robot Gripper

Model: RG2 Generation: V2

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD)
2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, December 16th, 2019

Group Management

Vilmos Beskid

RG6

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Robot Gripper

Model: RG6 Generation: V2

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD)
2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, December 16th, 2019

Group Management

Bested Whos S Vilmos Beskid

SG

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Robot Gripper

Model: SG Generation: V1

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD)
2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Odense, April 6th, 2020

Group Management

Bergd Volums

Vilmos Beskid CTO

VG10

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Robot Gripper

Model: VG10 Generation: V2

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD)
2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, December 16th, 2019

Group Management

Vilmos Beskid

Bergel Volumos

VGC10

CE/EU Declaration of Incorporation (Original)

According to European Machinery Directive 2006/42/EC annex II 1.B.

The manufacturer:

OnRobot A/S Teglværskvej 47H DK-5220, Odense SØ DENMARK

declares that the product:

Type: Industrial Robot Gripper

Model: VGC10 Generation: V1

Serial: 100000000-1009999999

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, including amendments, and with the regulations transposing it into national law.

The product is prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see instructions and guidance in this manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorized to compile this documentation.

Additionally, the product declares in conformity with the following directives, according to which the product is CE marked:

2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

Relevant essential health and safety requirements of the following EU directives are also applied:

2014/35/EU — Low Voltage Directive (LVD)
2012/19/EU — Waste of Electrical and Electronic Equipment (WEEE)

A list of applied harmonized standards, including associated specifications, is provided in this manual.

Budapest, December 16th, 2019

Group Management

Vilmos Beskid

Certifications

